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Analysis of a Botnet Takeover

This article describes an effort to take control of a 

particularly sophisticated and insidious botnet and study 

its operations for a period of 10 days. It summarizes what 

the authors learned and reports on what has happened 

to that botnet since.
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B otnets, networks of malware-infected ma-
chines (bots) controlled by an adversary, 
are the root cause of a large number of In-
ternet security problems. They’re the pri-

mary way cybercriminals carry out their nefarious 
tasks, such as sending spam, launching denial-of- 
service attacks, or stealing personal data. A par-
ticularly sophisticated and insidious variety is called 
Torpig, malware designed to harvest sensitive infor-
mation such as bank account and credit-card data 
from its victims.

To learn more about how botnets operate and 
what information they collect—particularly, in the 
case of centralized IRC- and HTTP-based bot-
nets—you can attempt to hijack the entire botnet. In 
this article, we describe our experience with active-
ly seizing control of the Torpig (also called Sinowal 
or Anserin) botnet and studying its operations for 
10 days. During this time, we observed more than 
180,000 infections and recorded almost 70 Gbytes 
of data. Although Torpig typically targets bank ac-
count and credit-card data, we found that it also 
steals a variety of other personal information. Ulti-
mately, we were able to determine the botnet’s size 
precisely and compare our results to alternative ways 
of counting botnet populations. The data provides 
a vivid demonstration of the threat that botnets in 
general and Torpig in particular present to today’s 
Internet. We also report on what has happened in 
the time that has passed since we lost control of the 
Torpig botnet and discuss some of the ethical and 
legal considerations of this type of research.

Torpig  
Life Cycle
On the surface, 
Torpig is one 
of many Trojan horses infesting today’s Internet. 
However, the sophisticated techniques it uses to 
steal data from its victims, the complex network 
infrastructure it relies on, and the vast financial 
damage that it causes set Torpig apart from other 
malware. A review of the Torpig life cycle, shown in 
Figure 1, illustrates the nature of the threat.

Torpig’s victims acquire the malware as part of the 
Mebroot rootkit, which takes control of a machine by 
replacing the system’s Master Boot Record (MBR). 
Attackers modify legitimate but vulnerable webpages 
(step 1 in Figure 1) with the inclusion of HTML tags 
that cause the victim’s browser to request JavaScript 
code (step 2) from a webpage under the attackers’ con-
trol (step 3)—a so-called drive-by download attack1. 
The JavaScript launches exploits against the browser 
or some of its components, such as ActiveX controls 
and plugins. If any exploit is successful, the victim’s 
machine downloads and executes a program from the 
drive-by download server. The victim’s machine then 
becomes a bot (step 4).

Mebroot has no malicious capability on its own. 
Instead, it provides a generic platform that installs, 
uninstalls, and activates other modules (such as DLLs). 
Mebroot initially contacts the Mebroot command-
and-control (C&C) server to obtain malicious mod-
ules (step 5). It places these modules, in encrypted 
form, in the system32 directory so that if the user 
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reboots the machine, it can reuse them immediately 
without having to contact the C&C server. It also 
time stamps the modules and names them after exist-
ing files in the same directory (with a different, ran-
dom extension) to avoid raising suspicion. After the 
initial update, Mebroot contacts its C&C server pe-
riodically, in two-hour intervals, to report its current 
configuration (that is, the type and version number 
of the currently installed modules) and to receive any 
updates. All communication with the C&C server oc-
curs via HTTP requests and responses using a sophis-
ticated, custom encryption algorithm.

In the case of the Torpig botnet, the Mebroot 
C&C server distributes the Torpig malware modules, 
and Mebroot injects them into some number of ap-
plications. These might include the Service Control 
Manager (services.exe), the file manager, Web 
browsers (for example, Internet Explorer, Firefox, 
and Opera), FTP clients (such as CuteFTP and 
LeechFTP), email clients (such as Thunderbird, Out-
look, and Eudora), instant messengers (for example, 
Skype and ICQ), and system programs (such as the 
command-line interpreter cmd.exe). After the injec-
tion, Torpig can inspect all the data handled by the 
infected programs and identify and store interesting 
pieces of information, such as credentials for online 
accounts and stored passwords.

Every 20 minutes, Torpig contacts the Torpig 
C&C server to upload stolen data (step 6). This com-
munication with the server also occurs over HTTP, 
protected by a simple obfuscation mechanism based on 
XORing the cleartext with an 8-byte key and base64 
encoding the result. (Security researchers broke this 
scheme at the end of 2008, and tools are now avail-
able to automate the decryption, such as Don Jackson’s 
Untorpig, available from www.secureworks.com/ 
research/tools/untorpig/.) The C&C server can reply 
to a bot in one of several ways. The server can sim-
ply acknowledge the data in what we call an okn re-
sponse, because of the string contained in the server’s 
reply. The C&C server can also send a configuration 
file to the bot (we call this an okc response), obfus-
cated by a simple XOR-11 encoding. This file speci-
fies how often the bot should contact the C&C server, 
a set of hard-coded servers to be used as backup, and 
a set of parameters to perform “man-in-the-browser” 
phishing attacks.

Torpig uses phishing attacks to actively elicit ad-
ditional, sensitive information from its victims beyond 
that which it might acquire during the passive moni-
toring it normally performs. These attacks occur in 
two steps. First, whenever the infected machine visits 
one of the domains specified in the configuration file 
(typically a banking webpage), Torpig issues a request 
to an injection server. The server’s response identi-

fies a trigger page on the target domain to instigate the 
attack (typically the site’s login page), a URL on the 
injection server that contains the phishing content 
(the injection URL), and several parameters for fine-
tuning the attack (for example, specifying whether the 
attack is active and the maximum number of times 
to launch it). The second step occurs when the user 
visits the trigger page: Torpig requests the injection 
URL from the injection server and puts the returned 
content into the user’s browser (step 7). This content 
typically consists of an HTML form that asks the user 
for sensitive information, such as credit-card and so-
cial security numbers.

Even attentive users find these phishing attacks dif-
ficult to detect. The injected content carefully repro-
duces the target webpage’s style and “look and feel,” 
and the injection mechanism defies all phishing indi-
cators included in modern browsers. For example, the 
SSL configuration appears correct, as does the URL 
displayed in the address bar, as shown in Figure 2, a 
screenshot of a Torpig phishing page for Chase Bank.

Torpig relies on a fairly complex network infra-
structure to infect machines, retrieve updates, perform 
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active phishing attacks, and send stolen information 
to its C&C server. However, we observed that the 
schemes that protect the communication in the Tor-
pig botnet (except those used by the Mebroot C&C) 
are insufficient to guarantee basic security (confiden-
tiality, integrity, and authenticity). This was a weak-
ness that enabled us to seize control of the botnet.

Taking Control of the Botnet
A fundamental aspect of any botnet is its coordina-
tion—that is, how the individual bots identify and 
communicate with their C&C servers. We set out to 
take control of Torpig through its C&C channel.

Traditionally, bots have located their C&C hosts 
through their IP addresses, DNS names, or node iden-
tifiers in peer-to-peer overlays. Recently, botnet au-
thors have found ways to make these schemes more 
flexible and robust against take-down actions, for 
example, by using IP fast-flux techniques.2 With fast-
flux, bots query a certain domain that corresponds to 
a set of IP addresses that change frequently. While this 
makes it more difficult to take down or block a spe-
cific C&C server, the use of only one domain name 
constitutes a single point of failure.

Several recent botnets, including Torpig, use do-
main flux instead, in which each bot independently 
uses a domain generation algorithm (DGA) to com-
pute a list of domain names. The bot attempts to con-

tact them in order until one successfully resolves to 
an IP address and the corresponding server provides a 
valid response. The bot then treats that host as genuine 
until the next round of domain generation. Domain 
flux is increasingly popular among botnet authors; the 
Kraken/Bobax and Srizbi bots and, more recently, the 
Conficker worm used similar mechanisms. By reverse 
engineering the DGA, it’s possible to predict the do-
mains the bots will attempt to contact.

Torpig’s DGA relies on the current date and a nu-
merical parameter. The algorithm first computes a 
“weekly” domain name—call it dw—that depends 
on the current week and year but is independent of 
the current day. (In other words, it remains constant 
for the entire week.) The bot then appends TLDs to 
the weekly domain name, generating domains such 
as dw.com, dw.net, and dw.biz. If attempts to reach its 
C&C server at those domains fail, Torpig computes 
a “daily” domain, say, dd, which also depends on the 
current day. (In other words, it generates a new do-
main each day.) Again, the bot tries dd.com first, with 
fallbacks to dd.net and dd.biz. If these domains also 
fail, Torpig attempts to contact the domains hard-
coded in its configuration file. The DGA used in 
Torpig is completely deterministic: given a specific 
current date, all bots generate the same list of domains 
in the same order.

In practice, the Torpig controllers registered the 
weekly .com domain and, in a few cases, the corre-
sponding .net domain for backup purposes. However, 
we observed that the botmasters tended not to register 
many of the future Torpig C&C domains in advance, 
which was a critical factor in enabling our hijacking. 
We were able to register the .com and .net domains 
that the botnet would be using for three consecutive 
weeks, from 25 January 2009 to 15 February 2009, 
and set up our own server to appear as a C&C host—a 
process known as sinkholing.

We set up an Apache Web server on our machines 
to receive and log bot requests, and we recorded all 
network traffic. We then automated the process of 
downloading the data from our hosting providers. 
Once a data file was downloaded, we removed it from 
the hosting provider’s server—thus, if our servers 
were compromised, an attacker would not have access 
to any historical data.

Mebroot domains allow botmasters to upgrade, 
remove, and install new malware components at any 
time, and criminals control them tightly. On 4 February 
2009, the Mebroot controllers distributed a new Tor-
pig binary that updated the DGA, ending our control 
prematurely. But during the 10 days that we controlled 
the botnet, we collected over 8.7 Gbytes of Apache log 
files and 69 Gbytes of raw network traffic. We encrypt-
ed all collected traffic and postprocessed the data using 

Figure 2. A man-in-the-browser phishing attack. Not only does the page have 

the same style as the original webpage, but the URL correctly points to the 

login page, the SSL certificate appears to be valid, and the status bar displays 

a padlock.
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a 256-bit AES key known by only those working on 
the project and stored offline. After our experiment was 
completed, we copied the encrypted data to an external 
drive, removed the data from our machines, and placed 
the drive in a safe.

Botnet Analysis
As mentioned previously, we collected almost 70 
Gbytes of data over the 10 days that we controlled 
Torpig. Here, we review our data analysis and impor-
tant insights into the size of botnets and their victims.

Data Collection and Format
All bots communicate with the Torpig C&C through 
HTTP POST requests, using a URL that contains the 
hexadecimal representation of the bot identifier and a 
submission header. The body of the request contains 
the data stolen from the victim’s machine, if any. The 
bot encrypts the submission header and the body us-
ing the Torpig encryption algorithm, and it uses the 
bot identifier (a token based on the infected machine’s 
hardware and software characteristics) as the symmet-
ric key, sending it in the clear.

After decryption, the submission header consists of 
several key value pairs that provide basic information 
about the bot. More precisely, the header contains the 
time stamp for the last update of the configuration file 
(ts), the IP address of the bot or a list of IP addresses 
for a multihomed machine (ip), the port numbers of 
the HTTP and SOCKS proxies that Torpig opens on 
the infected machine (hport and sport), the oper-
ating system version and locale (os and cn), the bot 
identifier (nid), and the build and version number of 
Torpig (bld and ver).

The request body consists of data items of different 
types, depending on the stolen information. Table 1 
shows the different data types that we observed dur-
ing our monitoring, in order of frequency. Form data 
items contain the contents of HTML forms submit-
ted via POST requests by the victim’s browser. Torpig 
collects the URL of the form’s host, the URL for the 
form’s submission, and the name, value, and type of 
all form fields. These data items frequently contain 
the usernames and passwords required to authenticate 
with websites. Note that credentials transmitted over 
HTTPS aren’t safe from Torpig, since Torpig accesses 
them before encryption through the SSL.

Email items consist of email addresses, presumably 
useful for spam purposes. The Windows password data 
type is used to transmit Windows passwords and other 
uncategorized data elements. Torpig obtains this in-
formation from email clients, such as Outlook, Thun-
derbird, and Eudora. POP account, HTTP account, 
FTP account, and SMTP account data types contain the 
credentials used to access these accounts at their re-

spective servers. Torpig obtains this information by 
exploiting the password manager functionality pro-
vided by most Web and email clients. SMTP account 
items also contain the source and destination addresses 
of emails sent via SMTP. Finally, mailbox account items 
contain the configuration information for email ac-
counts—that is, the email address associated with the 
mailbox and the credentials required to access the 
mailbox and to send emails from it.

Botnet Size
In order to better understand the scale of the threat 
posed by Torpig, we needed to determine the bot-
net’s size. We refer to two definitions as introduced 
by M.A. Rajab and colleagues3: its footprint, which in-
dicates the total number of machines that have been 
compromised over time, and its live population, which 
denotes the number of compromised hosts simultane-
ously communicating with the C&C server.

The Torpig architecture provides an advantageous 
perspective for measuring the botnet’s size. In fact, 
since we centrally and directly observed every in-
fected machine that normally would have connected 
to the botmaster’s server, we had a complete view of 
the machines in the botnet. In addition, our collec-
tion methodology was entirely passive and thus avoid-
ed active probing that might have otherwise polluted 
the measured network. Fortunately, Torpig generates 
and transmits unique and persistent IDs that make for 
good identifiers of infected machines.

Counting bots using submission header fields. As 
a starting point to estimate the botnet’s footprint, 
we analyzed the nid field that Torpig sends in the 
submission header. By reverse engineering the Tor-
pig binary, we were able to reconstruct the algorithm 
used to compute this 8-byte value. The algorithm 
first queries the infected machine’s primary SCSI 
hard disk for its model and serial numbers. If no SCSI 
hard disk is present, or retrieving the disk informa-

Table 1. Data items sent to our C&C server by Torpig bots.

Data type Data items

Form data 11,966,532

Email 1,258,862

Windows password 1,235,122

POP account 415,206

HTTP account 411,039

SMTP account 100,472

Mailbox account 54,090

FTP account 12,307
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tion is unsuccessful, it then tries to extract the same 
information from the primary physical hard disk 
drive (IDE or SATA). It then uses the disk informa-
tion as input to a hashing function that produces the 
final nid value. If the attempts to retrieve hardware 
information fail, Torpig obtains the nid value by 
concatenating a hard-coded value with the Windows 
volume serial number.

We attempted to validate whether the nid is 
unique for each bot by correlating this value with the 
other information provided in the submission header 
and with bot connection patterns to our server. In 
particular, we expected that all submissions with a 
specific nid would also report the same values for the 
os, cn, bld, and ver fields. Instead, we found 2,079 
cases for which this assumption did not hold. There-
fore, we conclude that counting unique nids under-
estimates the botnet’s footprint. As a reference point, 
between 25 January 2009 and 4 February 2009, we 
observed 180,835 nid values.

To more accurately identify the infected machines, 
we used the nid, os, cn, bld, and ver values from 
the submission header. Although the nid value is 
mostly unique among bots, the other fields help dis-
tinguish different machines that have the same nid. 
In particular, Torpig determines the os (OS version 
number) and cn (locale information) fields with the 
system calls GetVersionEx and GetLocale Info, 
respectively, which don’t change unless the user 
modifies the locale information or changes the OS. 
The Torpig binary contains hard-coded values for 
the bld and ver fields. By counting unique tuples 
from the Torpig headers consisting of (nid, os, cn, 
bld, ver), we estimated that the botnet’s footprint 
for the 10 days of our monitoring consisted of more 
than 182,000 machines.

Botnet size vs. IP count. It’s well known that count-
ing the number of infected bots by counting the 
unique IP addresses that connect to the botnet’s C&C 
server is problematic, due to network effects such as 
DHCP churn and NAT.

During 10 days of monitoring, we observed 
182,914 bots. In contrast, 1,247,642 unique IP ad-
dresses contacted our server during the same period. 
Therefore, taking the IP count as the botnet’s foot-
print would overestimate the actual size by an order 
of magnitude.

While the aggregate number of unique IP address-
es distorts the size of the botnet’s footprint, counting 
IP addresses can help determine a close approxima-
tion of the botnet’s size using other metrics. The me-
dian and average sizes of Torpig’s live population were 
49,272 and 48,532, respectively. The live population 
fluctuates, with peaks corresponding to 9:00 a.m. Pa-
cific Standard Time (PST), when the most computers 
are simultaneously online in the US and Europe. The 
smallest live population occurs around 9:00 p.m. PST, 
when more people in the US and Europe are offline. 
The observed number of unique bot IDs and unique 
IP addresses per hour are virtually identical, as shown 
in Figure 3—on average, the bot IDs were only 1.3 
percent fewer than the number of IP addresses. Thus, 
the number of unique IP addresses per hour provides a 
good estimation of the botnet’s live population.

DHCP and NAT effects account for the differ-
ence between IP count and the actual bot count. 
Networks using DHCP or connecting through dial-
up lines allocate clients (machines on the network) 
an address from a pool of available IP addresses. The 
allocation is often dynamic, meaning that a client 
doesn’t always get the same IP address, which can 
inflate the number of observed IP addresses at the 
botnet C&C server. Short leases (the length of time 
for which the allocation is valid) can further mag-
nify this effect. This phenomenon was very com-
mon during our monitoring. In fact, we identified 
some ISPs that rotated IP addresses so frequently that 
almost every time an infected host connected to us, 
it had a new IP address. In one instance, a single 
host changed IP addresses 694 times in just 10 days. 
In other cases, a host was associated with different 
IP addresses on the same autonomous systems but 
in different class B/16 subnets. Overall, we observed 
706 different machines with more than 100 unique 
IP addresses each.

Threats and Data Analysis
In our research, we found that Torpig creates a con-
siderable potential for damage, due not only to the 
sheer volume of data it collects but also to the amount 
of computing resources the botnet makes available.
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Financial Data Stealing
Torpig specifically goes after information that’s easy 
to monetize in the underground market, particular-
ly financial information such as bank accounts and 
credit-card numbers. The typical Torpig configu-
ration file lists roughly 300 domains belonging to 
banks and other financial institutions that will be the 
target of the phishing attacks described earlier.

In 10 days, Torpig obtained the credentials of 8,310 
accounts at 410 different institutions. The top targeted 
institutions were PayPal (1,770 accounts), Poste Ital-
iane (765), Capital One (314), E*Trade (304), and 
Chase (217). At the other end of the spectrum, a large 
number of companies had only a handful of compro-
mised accounts; for example, 310 had 10 or fewer. We 
noticed that Torpig obtained 38 percent of its stolen 
credentials from the browser’s password manager, 
rather than by intercepting an actual login session. 
(It was possible to infer that number because Torpig 
uses different data formats to upload stolen credentials 
from different sources.)

Torpig also targets credit-card data. Using a credit- 
card validation heuristic that includes the Luhn algo-
rithm, and matching against the correct number of 
digits and numeric prefixes of card numbers from the 
most popular credit-card companies, we extracted 
1,660 unique credit- and debit-card numbers from 
our collected data. Based on IP address geolocation, 
we surmise that 49 percent of the card numbers came 
from victims in the US, 12 percent from Italy, and 8 
percent from Spain, with 40 other countries making 
up the balance. The most common cards include Visa 
(1,056), MasterCard (447), American Express (81), 
Maestro (36), and Discover (24).

Quantifying the value of the financial informa-
tion stolen by Torpig is an uncertain process because 
of the nature of the underground markets. The 2008 
“Symantec Report on The Underground Economy” 
(hwww.symantec.com/content/en/us/about/media/
pdfs/Underground_Econ_Report.pdf.) indicated 
(loose) ranges of prices for common goods: it priced 
credit cards between US$0.10 and $25, and bank ac-
counts from $10 to $1,000. If these figures are accurate, 
in 10 days of activity, the Torpig controllers could have 
earned anywhere between $83,000 and $8.3 million.

We also wanted to determine the rate at which 
the botnet produces new financial information for its 
controllers—a botnet that generates all of its value in 
a few days and only recycles stale information after-
ward is less valuable than one that steadily produces 
fresh data. Although we observed the botnet for only 
10 days and therefore can’t draw unequivocal con-
clusions, the Torpig bots did continuously steal and 
report new bank accounts and credit-card numbers 
during that period.

Password Analysis
A poll conducted by Sophos in March 2009 (www.
sophos.com/pressoffice/news/articles/2009/03/pass-
word-security.html) found that a third of 676 Internet 
users surveyed neglect the importance of using strong 
passwords and admitted that they reused online au-
thentication credentials across different Web services. 
It’s reasonable to trust the results of a poll, but it’s 
also important to cross-validate the results, as people 
might not always report accurately.

Our takeover of the Torpig botnet offered us the 
rare opportunity to obtain the necessary evidence to 
validate Sophos’s results. The benefits of the creden-
tial analysis we performed are twofold. First, it makes 
it possible to rely on real collected data and not on 
user-provided information. Second, the amount of 
data we collected from the Torpig- infected machines 
was two orders of magnitude bigger than that used in 
the Sophos poll.

While we controlled the botnet, Torpig bots stole 
297,962 unique credentials (username and password 
pairs) sent by 52,540 different Torpig-infected ma-
chines. For each infected host, we retrieved all the 
unique username and password pairs it submitted and 
calculated the number of distinct Web services each 
credential went with. Our analysis found that almost 
28 percent of the victims reused their credentials for 
accessing 368,501 webpages. While this percent-
age is slightly lower than the Sophos results, it’s close 
enough to confirm and validate.

In addition to checking for credential reuse, we 
also conducted an experiment to assess the strength 
of the 173,686 unique passwords we discovered. To 
this end, we created a Unix-like password file to 
feed John the Ripper (www.openwall.com/john/), 
a popular password cracker tool. The cracker recov-
ered approximately 56,000 passwords in less than 65 
minutes by using permutation, substitution, and other 
simple replacement rules (the “single” mode). It re-
covered another 14,000 passwords in the next 10 min-
utes when it switched modes to use a large word list, 
for a total of more than 40 percent recovered in less 
than 75 minutes. Over the next 24 hours, it recovered 
an additional 30,000 passwords by brute force (the 
 “incremental” mode).

Aftermath
It’s been more than a year since we took over the 
Torpig botnet.

Current Status
Over the past year, the Torpig botnet has changed in 
interesting ways, particularly as regards its data theft 
capabilities and the programs that it targets. Torpig 
has improved its man-in-the-browser functionality 
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and can now dynamically rewrite the HTML con-
tent of specific webpages, using a modified version 
of the Sizzle JavaScript library, to hide fraudulent 
transactions when a victim logs into a compromised 
account. This enables a criminal to transfer money 
out of a bank account and extend the amount of time 
before the victim is likely to notice. It also increases 
the chances that a criminal can clear funds from an 
account before the financial institution can revert the 
transaction.

Current versions of Torpig also enable the Win-
dows HelpAssistant account that’s accessible via the 
Remote Desktop Protocol (RDP). This lets criminals 
control the machine remotely through the Windows 
GUI, as if they were sitting in front of it. We suspect 
that Torpig has this functionality so that criminals can 
log in and manually dig through files and documents 
on a victim’s machine to steal sensitive data. The mis-
creants appear to be interested in espionage in addi-
tion to financial theft.

Another significant modification is in the com-
munication protocol, which occurred several months 
after our experiment. The new protocol is identi-
cal to that used by the Mebroot rootkit, and its en-
cryption is similar to the Data Encryption Standard 
(DES). Therefore, it’s harder for researchers and law 
enforcement to mimic a Torpig C&C server and to 
decrypt and repatriate stolen data. It’s likewise diffi-
cult to determine if the operators of Torpig switched 
the encryption algorithm as a direct response to our 
work, or if it was simply part of their periodic software 
updates and would have occurred anyway. (Mebroot 
had already implemented this encryption before our 
work with Torpig.)

The Torpig botnet’s size has been relatively stable 
since our sinkhole closed in February 2009. Figure 4 
shows the number of IP addresses connecting to the 
C&C server domain names for 10 days in late Oct ober 
and early November of that same year, demonstrat-
ing that despite the attention that the Torpig botnet 
received from our work, it has remained virtually 
unscathed. Roughly 50,000 infected machines were 
online concurrently in November 2009, with a peak 
of 80,000 infected machines online at the same time.

Ethical and Legal Considerations
Our experiment in sinkholing the Torpig botnet is 
similar to other experiments that recently tried to shed 
light on the characteristics of the underground econo-
my.4 These types of studies are tremendously important 
for understanding and combating computer crime, but 
they have serious ethical implications, as they involve 
the computers of unsuspecting users and sometimes 
leverage and piggyback on infrastructures created by 
criminals. Because of the delicate nature of this work, 
researchers must adhere to strict ethical criteria. The 
computer security research community has seen a live-
ly debate about these issues recently; for example, the 
NDSS symposium in February 2010 featured a panel 
titled “Ethics in Networking and Security Research.”

We established two main ethical criteria for our 
underground economy research: no user should be 
worse off as a result of our activities, and our activi-
ties should be beneficial for society at large. The first 
criterion is important because it puts the well-being 
of the cybercrime victims above researchers’ desire 
to test a hypothesis or perform an experiment. It was 
why we decided not to send the victims of the Torpig 
botnet a command that would uninstall the malware: 
while appealing, this action might have had unpre-
dictable repercussions on the user environment.

The second criterion states that the research should 
improve the public’s security. Our experiment had 
three societal benefits. First, the financial institutions 
involved were able to identify and secure compro-
mised accounts. Second, we provided useful infor-
mation to law enforcement about the inner workings 
of the Torpig/Mebroot infrastructure, which might 
help in eradicating this threat. Third, by sharing our 
experience with the research community, we believe 
that we improved the understanding of this type of 
malware infrastructure.

Like most computer scientists, we’re neither eth-
ics experts nor lawyers. However, our experience in 
carrying out these experiments, as well as discussions 
that we had with colleagues after reporting our results, 
made us aware of several issues that need attention. One 
is that of oversight: some organization, committee, or 
other body should be responsible for providing feed-
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back on the ethical soundness of these experiments. 
One possible approach is for researchers to seek Institu-
tional Review Board (IRB) approval from their home 
institutions before starting any experiments. We didn’t 
get prior approval because we weren’t planning to use 
human subjects in our experiments, but we did obtain 
the necessary approval after realizing that we were col-
lecting personally identifiable information. One limi-
tation of IRB approval agencies is that the members of 
the review board might not have the domain-specific 
knowledge necessary to fully understand the actual 
implications or side effects of an experiment.

Another oversight approach is to have the program 
committees (PCs) of computer security conferences 
determine what the ethical boundaries are. By accept-
ing or rejecting papers and providing feedback to the 
authors, these committees can help shape what are 
“acceptable practices” in the security research com-
munity. Unfortunately, the use of PCs to establish 
and enforce ethical criteria also has disadvantages. 
First, the reviewing process almost never allows for 
an appeal in which scientists can explain in detail the 
ethical reasoning behind their choices. Second, PCs 
usually change substantially across conferences and 
even in different years for the same conference. Con-
sequently, it’s difficult to provide consistent feedback 
to paper authors.

As security research on the underground economy 
expands its focus and intertwines itself with the world 
of organized cybercrime, ethical issues will become 
even more relevant. We believe that the next few 
years will be key in shaping a new ethical stance for 
the computer security community, and we hope that 

studies like ours might be the starting point for a con-
structive discussion of ethical issues.

The legal aspects of performing network monitor-
ing research are a complicated issue. Often, the vari-
ous parties (criminals, victims, and researchers) reside 
in countries all over the world, and what might be 
legal in one country might be illegal in another. For 
our research, we followed several guidelines set by US 
federal law, including the Wiretap Act, the Pen Reg-
ister and Trap and Trace Act, and the Patriot Act. One 
of the main points of all these laws governing packet 
sniffing (wiretaps) is the intent of those conducting 
the monitoring. In addition, 18 U.S.C. §2511 includes 
a provider protection clause stating that a system ad-
ministrator can monitor a network to protect the ser-
vice and its users. Courts have generally extended this 
protection to include network security researchers 
who have some active protection goal in mind.5

We also spoke with a lawyer, whose opinion was 
that our collection of information might not be con-
sidered a wiretap because users’ systems volunteered 
the data, and we didn’t intercept the information in 
transit to a different destination (that is, our server was 
the bot software’s intended destination). The lawyer 
also thought that because our intent was to help the 
victims recover from the compromise of their com-
puter, the collection of the information was legal.

Several lessons emerged from the analysis of the 
data we collected, as well as from the process of 
obtaining (and losing) the botnet. We found that a 
naïve evaluation of botnet size based on the count 
of distinct IPs yields grossly overestimated results 
(a finding that confirms previous, similar results). 

Related Work in Understanding the Botnet Phenomenon

G iven the importance of the botnet problem, researchers have invested significant effort into gaining a better understanding of 

the phenomenon. One approach to studying botnets is to perform passive analysis of secondary effects of the activity of compro-

mised machines. For example, researchers have collected spam that was likely sent by bots,1 or they focus on DNS queries2,3 or DNS 

blacklist queries4 performed by bot-infected machines. A more active approach to studying botnets is via infiltration, whereby research-

ers join a botnet to perform analysis from the inside using an actual malware sample or a client simulating a bot. To achieve this, they 

use honeypots, honey clients, or spam traps to obtain a copy of a malware sample. They then execute the sample in a controlled 

environment, which makes it possible to observe the traffic exchanged between the bot and its command-and-control servers.
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In addition, the victims of botnets are often users 
with poorly maintained machines that choose eas-
ily guessable passwords to protect access to sensitive 
sites. This is evidence that the malware problem 
is fundamentally a cultural problem. Finally, we 
learned that interacting with registrars, hosting fa-
cilities, victim institutions, and law enforcement is a 
rather complicated process. 
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