
Malware Analysis

64 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES 1540-7993/11/$26.00 © 2011 IEEE JANUARY/FEBRUARY 2011

Analysis of a Botnet Takeover

This article describes an effort to take control of a

particularly sophisticated and insidious botnet and study

its operations for a period of 10 days. It summarizes what

the authors learned and reports on what has happened

to that botnet since.

Brett
Stone-GroSS,
Marco cova,
BoB GilBert,
richard
KeMMerer,
chriStopher
KrueGel,
and Giovanni
viGna

University
of California,
Santa Barbara

B otnets, networks of malware-infected ma-
chines (bots) controlled by an adversary,
are the root cause of a large number of In-
ternet security problems. They’re the pri-

mary way cybercriminals carry out their nefarious
tasks, such as sending spam, launching denial-of-
service attacks, or stealing personal data. A par-
ticularly sophisticated and insidious variety is called
Torpig, malware designed to harvest sensitive infor-
mation such as bank account and credit-card data
from its victims.

To learn more about how botnets operate and
what information they collect—particularly, in the
case of centralized IRC- and HTTP-based bot-
nets—you can attempt to hijack the entire botnet. In
this article, we describe our experience with active-
ly seizing control of the Torpig (also called Sinowal
or Anserin) botnet and studying its operations for
10 days. During this time, we observed more than
180,000 infections and recorded almost 70 Gbytes
of data. Although Torpig typically targets bank ac-
count and credit-card data, we found that it also
steals a variety of other personal information. Ulti-
mately, we were able to determine the botnet’s size
precisely and compare our results to alternative ways
of counting botnet populations. The data provides
a vivid demonstration of the threat that botnets in
general and Torpig in particular present to today’s
Internet. We also report on what has happened in
the time that has passed since we lost control of the
Torpig botnet and discuss some of the ethical and
legal considerations of this type of research.

Torpig
Life Cycle
On the surface,
Torpig is one
of many Trojan horses infesting today’s Internet.
However, the sophisticated techniques it uses to
steal data from its victims, the complex network
infrastructure it relies on, and the vast financial
damage that it causes set Torpig apart from other
malware. A review of the Torpig life cycle, shown in
Figure 1, illustrates the nature of the threat.

Torpig’s victims acquire the malware as part of the
Mebroot rootkit, which takes control of a machine by
replacing the system’s Master Boot Record (MBR).
Attackers modify legitimate but vulnerable webpages
(step 1 in Figure 1) with the inclusion of HTML tags
that cause the victim’s browser to request JavaScript
code (step 2) from a webpage under the attackers’ con-
trol (step 3)—a so-called drive-by download attack1.
The JavaScript launches exploits against the browser
or some of its components, such as ActiveX controls
and plugins. If any exploit is successful, the victim’s
machine downloads and executes a program from the
drive-by download server. The victim’s machine then
becomes a bot (step 4).

Mebroot has no malicious capability on its own.
Instead, it provides a generic platform that installs,
uninstalls, and activates other modules (such as DLLs).
Mebroot initially contacts the Mebroot command-
and-control (C&C) server to obtain malicious mod-
ules (step 5). It places these modules, in encrypted
form, in the system32 directory so that if the user

Malware Analysis

 www.computer.org/security 65

reboots the machine, it can reuse them immediately
without having to contact the C&C server. It also
time stamps the modules and names them after exist-
ing files in the same directory (with a different, ran-
dom extension) to avoid raising suspicion. After the
initial update, Mebroot contacts its C&C server pe-
riodically, in two-hour intervals, to report its current
configuration (that is, the type and version number
of the currently installed modules) and to receive any
updates. All communication with the C&C server oc-
curs via HTTP requests and responses using a sophis-
ticated, custom encryption algorithm.

In the case of the Torpig botnet, the Mebroot
C&C server distributes the Torpig malware modules,
and Mebroot injects them into some number of ap-
plications. These might include the Service Control
Manager (services.exe), the file manager, Web
browsers (for example, Internet Explorer, Firefox,
and Opera), FTP clients (such as CuteFTP and
LeechFTP), email clients (such as Thunderbird, Out-
look, and Eudora), instant messengers (for example,
Skype and ICQ), and system programs (such as the
command-line interpreter cmd.exe). After the injec-
tion, Torpig can inspect all the data handled by the
infected programs and identify and store interesting
pieces of information, such as credentials for online
accounts and stored passwords.

Every 20 minutes, Torpig contacts the Torpig
C&C server to upload stolen data (step 6). This com-
munication with the server also occurs over HTTP,
protected by a simple obfuscation mechanism based on
XORing the cleartext with an 8-byte key and base64
encoding the result. (Security researchers broke this
scheme at the end of 2008, and tools are now avail-
able to automate the decryption, such as Don Jackson’s
Untorpig, available from www.secureworks.com/
research/tools/untorpig/.) The C&C server can reply
to a bot in one of several ways. The server can sim-
ply acknowledge the data in what we call an okn re-
sponse, because of the string contained in the server’s
reply. The C&C server can also send a configuration
file to the bot (we call this an okc response), obfus-
cated by a simple XOR-11 encoding. This file speci-
fies how often the bot should contact the C&C server,
a set of hard-coded servers to be used as backup, and
a set of parameters to perform “man-in-the-browser”
phishing attacks.

Torpig uses phishing attacks to actively elicit ad-
ditional, sensitive information from its victims beyond
that which it might acquire during the passive moni-
toring it normally performs. These attacks occur in
two steps. First, whenever the infected machine visits
one of the domains specified in the configuration file
(typically a banking webpage), Torpig issues a request
to an injection server. The server’s response identi-

fies a trigger page on the target domain to instigate the
attack (typically the site’s login page), a URL on the
injection server that contains the phishing content
(the injection URL), and several parameters for fine-
tuning the attack (for example, specifying whether the
attack is active and the maximum number of times
to launch it). The second step occurs when the user
visits the trigger page: Torpig requests the injection
URL from the injection server and puts the returned
content into the user’s browser (step 7). This content
typically consists of an HTML form that asks the user
for sensitive information, such as credit-card and so-
cial security numbers.

Even attentive users find these phishing attacks dif-
ficult to detect. The injected content carefully repro-
duces the target webpage’s style and “look and feel,”
and the injection mechanism defies all phishing indi-
cators included in modern browsers. For example, the
SSL configuration appears correct, as does the URL
displayed in the address bar, as shown in Figure 2, a
screenshot of a Torpig phishing page for Chase Bank.

Torpig relies on a fairly complex network infra-
structure to infect machines, retrieve updates, perform

Mebroot
C&C
server

5

Torpig
C&C
server

Con�gurationStolen
data

Phishing
HTML

URL

Hijacked
component

Mebroot
Drive-by

download server

Becomes a bot

Victim Bot

Compromised
Web server

gnh5.exe
4

GET/
?gnh5

3

1

2 Redirection

GET/

6

Injection
server

7

Torpig
DLLs

Figure 1. The Torpig network infrastructure. Shaded in gray are the

components owned by the criminals. The Torpig command-and-control

server is the component that we “hijacked.” Step 1: attackers modify

vulnerable webpages. Step 2: modified page redirects victim’s browser to

drive-by download server. Step 3: vulnerable browser requests JavaScript.

Step 4: victim downloads and executes Mebroot to become a bot. Step 5:

bot obtains Torpig modules. Step 6: bot uploads data stolen from victim’s

computer. Step 7: when browsing a targeted site, victim is redirected to

HTML injection server for man-in-the-browser attack.

Malware Analysis

66 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

active phishing attacks, and send stolen information
to its C&C server. However, we observed that the
schemes that protect the communication in the Tor-
pig botnet (except those used by the Mebroot C&C)
are insufficient to guarantee basic security (confiden-
tiality, integrity, and authenticity). This was a weak-
ness that enabled us to seize control of the botnet.

Taking Control of the Botnet
A fundamental aspect of any botnet is its coordina-
tion—that is, how the individual bots identify and
communicate with their C&C servers. We set out to
take control of Torpig through its C&C channel.

Traditionally, bots have located their C&C hosts
through their IP addresses, DNS names, or node iden-
tifiers in peer-to-peer overlays. Recently, botnet au-
thors have found ways to make these schemes more
flexible and robust against take-down actions, for
example, by using IP fast-flux techniques.2 With fast-
flux, bots query a certain domain that corresponds to
a set of IP addresses that change frequently. While this
makes it more difficult to take down or block a spe-
cific C&C server, the use of only one domain name
constitutes a single point of failure.

Several recent botnets, including Torpig, use do-
main flux instead, in which each bot independently
uses a domain generation algorithm (DGA) to com-
pute a list of domain names. The bot attempts to con-

tact them in order until one successfully resolves to
an IP address and the corresponding server provides a
valid response. The bot then treats that host as genuine
until the next round of domain generation. Domain
flux is increasingly popular among botnet authors; the
Kraken/Bobax and Srizbi bots and, more recently, the
Conficker worm used similar mechanisms. By reverse
engineering the DGA, it’s possible to predict the do-
mains the bots will attempt to contact.

Torpig’s DGA relies on the current date and a nu-
merical parameter. The algorithm first computes a
“weekly” domain name—call it dw—that depends
on the current week and year but is independent of
the current day. (In other words, it remains constant
for the entire week.) The bot then appends TLDs to
the weekly domain name, generating domains such
as dw.com, dw.net, and dw.biz. If attempts to reach its
C&C server at those domains fail, Torpig computes
a “daily” domain, say, dd, which also depends on the
current day. (In other words, it generates a new do-
main each day.) Again, the bot tries dd.com first, with
fallbacks to dd.net and dd.biz. If these domains also
fail, Torpig attempts to contact the domains hard-
coded in its configuration file. The DGA used in
Torpig is completely deterministic: given a specific
current date, all bots generate the same list of domains
in the same order.

In practice, the Torpig controllers registered the
weekly .com domain and, in a few cases, the corre-
sponding .net domain for backup purposes. However,
we observed that the botmasters tended not to register
many of the future Torpig C&C domains in advance,
which was a critical factor in enabling our hijacking.
We were able to register the .com and .net domains
that the botnet would be using for three consecutive
weeks, from 25 January 2009 to 15 February 2009,
and set up our own server to appear as a C&C host—a
process known as sinkholing.

We set up an Apache Web server on our machines
to receive and log bot requests, and we recorded all
network traffic. We then automated the process of
downloading the data from our hosting providers.
Once a data file was downloaded, we removed it from
the hosting provider’s server—thus, if our servers
were compromised, an attacker would not have access
to any historical data.

Mebroot domains allow botmasters to upgrade,
remove, and install new malware components at any
time, and criminals control them tightly. On 4 February
2009, the Mebroot controllers distributed a new Tor-
pig binary that updated the DGA, ending our control
prematurely. But during the 10 days that we controlled
the botnet, we collected over 8.7 Gbytes of Apache log
files and 69 Gbytes of raw network traffic. We encrypt-
ed all collected traffic and postprocessed the data using

Figure 2. A man-in-the-browser phishing attack. Not only does the page have

the same style as the original webpage, but the URL correctly points to the

login page, the SSL certificate appears to be valid, and the status bar displays

a padlock.

Malware Analysis

 www.computer.org/security 67

a 256-bit AES key known by only those working on
the project and stored offline. After our experiment was
completed, we copied the encrypted data to an external
drive, removed the data from our machines, and placed
the drive in a safe.

Botnet Analysis
As mentioned previously, we collected almost 70
Gbytes of data over the 10 days that we controlled
Torpig. Here, we review our data analysis and impor-
tant insights into the size of botnets and their victims.

Data Collection and Format
All bots communicate with the Torpig C&C through
HTTP POST requests, using a URL that contains the
hexadecimal representation of the bot identifier and a
submission header. The body of the request contains
the data stolen from the victim’s machine, if any. The
bot encrypts the submission header and the body us-
ing the Torpig encryption algorithm, and it uses the
bot identifier (a token based on the infected machine’s
hardware and software characteristics) as the symmet-
ric key, sending it in the clear.

After decryption, the submission header consists of
several key value pairs that provide basic information
about the bot. More precisely, the header contains the
time stamp for the last update of the configuration file
(ts), the IP address of the bot or a list of IP addresses
for a multihomed machine (ip), the port numbers of
the HTTP and SOCKS proxies that Torpig opens on
the infected machine (hport and sport), the oper-
ating system version and locale (os and cn), the bot
identifier (nid), and the build and version number of
Torpig (bld and ver).

The request body consists of data items of different
types, depending on the stolen information. Table 1
shows the different data types that we observed dur-
ing our monitoring, in order of frequency. Form data
items contain the contents of HTML forms submit-
ted via POST requests by the victim’s browser. Torpig
collects the URL of the form’s host, the URL for the
form’s submission, and the name, value, and type of
all form fields. These data items frequently contain
the usernames and passwords required to authenticate
with websites. Note that credentials transmitted over
HTTPS aren’t safe from Torpig, since Torpig accesses
them before encryption through the SSL.

Email items consist of email addresses, presumably
useful for spam purposes. The Windows password data
type is used to transmit Windows passwords and other
uncategorized data elements. Torpig obtains this in-
formation from email clients, such as Outlook, Thun-
derbird, and Eudora. POP account, HTTP account,
FTP account, and SMTP account data types contain the
credentials used to access these accounts at their re-

spective servers. Torpig obtains this information by
exploiting the password manager functionality pro-
vided by most Web and email clients. SMTP account
items also contain the source and destination addresses
of emails sent via SMTP. Finally, mailbox account items
contain the configuration information for email ac-
counts—that is, the email address associated with the
mailbox and the credentials required to access the
mailbox and to send emails from it.

Botnet Size
In order to better understand the scale of the threat
posed by Torpig, we needed to determine the bot-
net’s size. We refer to two definitions as introduced
by M.A. Rajab and colleagues3: its footprint, which in-
dicates the total number of machines that have been
compromised over time, and its live population, which
denotes the number of compromised hosts simultane-
ously communicating with the C&C server.

The Torpig architecture provides an advantageous
perspective for measuring the botnet’s size. In fact,
since we centrally and directly observed every in-
fected machine that normally would have connected
to the botmaster’s server, we had a complete view of
the machines in the botnet. In addition, our collec-
tion methodology was entirely passive and thus avoid-
ed active probing that might have otherwise polluted
the measured network. Fortunately, Torpig generates
and transmits unique and persistent IDs that make for
good identifiers of infected machines.

Counting bots using submission header fields. As
a starting point to estimate the botnet’s footprint,
we analyzed the nid field that Torpig sends in the
submission header. By reverse engineering the Tor-
pig binary, we were able to reconstruct the algorithm
used to compute this 8-byte value. The algorithm
first queries the infected machine’s primary SCSI
hard disk for its model and serial numbers. If no SCSI
hard disk is present, or retrieving the disk informa-

Table 1. Data items sent to our C&C server by Torpig bots.

Data type Data items

Form data 11,966,532

Email 1,258,862

Windows password 1,235,122

POP account 415,206

HTTP account 411,039

SMTP account 100,472

Mailbox account 54,090

FTP account 12,307

Malware Analysis

68 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

tion is unsuccessful, it then tries to extract the same
information from the primary physical hard disk
drive (IDE or SATA). It then uses the disk informa-
tion as input to a hashing function that produces the
final nid value. If the attempts to retrieve hardware
information fail, Torpig obtains the nid value by
concatenating a hard-coded value with the Windows
volume serial number.

We attempted to validate whether the nid is
unique for each bot by correlating this value with the
other information provided in the submission header
and with bot connection patterns to our server. In
particular, we expected that all submissions with a
specific nid would also report the same values for the
os, cn, bld, and ver fields. Instead, we found 2,079
cases for which this assumption did not hold. There-
fore, we conclude that counting unique nids under-
estimates the botnet’s footprint. As a reference point,
between 25 January 2009 and 4 February 2009, we
observed 180,835 nid values.

To more accurately identify the infected machines,
we used the nid, os, cn, bld, and ver values from
the submission header. Although the nid value is
mostly unique among bots, the other fields help dis-
tinguish different machines that have the same nid.
In particular, Torpig determines the os (OS version
number) and cn (locale information) fields with the
system calls GetVersionEx and GetLocale Info,
respectively, which don’t change unless the user
modifies the locale information or changes the OS.
The Torpig binary contains hard-coded values for
the bld and ver fields. By counting unique tuples
from the Torpig headers consisting of (nid, os, cn,
bld, ver), we estimated that the botnet’s footprint
for the 10 days of our monitoring consisted of more
than 182,000 machines.

Botnet size vs. IP count. It’s well known that count-
ing the number of infected bots by counting the
unique IP addresses that connect to the botnet’s C&C
server is problematic, due to network effects such as
DHCP churn and NAT.

During 10 days of monitoring, we observed
182,914 bots. In contrast, 1,247,642 unique IP ad-
dresses contacted our server during the same period.
Therefore, taking the IP count as the botnet’s foot-
print would overestimate the actual size by an order
of magnitude.

While the aggregate number of unique IP address-
es distorts the size of the botnet’s footprint, counting
IP addresses can help determine a close approxima-
tion of the botnet’s size using other metrics. The me-
dian and average sizes of Torpig’s live population were
49,272 and 48,532, respectively. The live population
fluctuates, with peaks corresponding to 9:00 a.m. Pa-
cific Standard Time (PST), when the most computers
are simultaneously online in the US and Europe. The
smallest live population occurs around 9:00 p.m. PST,
when more people in the US and Europe are offline.
The observed number of unique bot IDs and unique
IP addresses per hour are virtually identical, as shown
in Figure 3—on average, the bot IDs were only 1.3
percent fewer than the number of IP addresses. Thus,
the number of unique IP addresses per hour provides a
good estimation of the botnet’s live population.

DHCP and NAT effects account for the differ-
ence between IP count and the actual bot count.
Networks using DHCP or connecting through dial-
up lines allocate clients (machines on the network)
an address from a pool of available IP addresses. The
allocation is often dynamic, meaning that a client
doesn’t always get the same IP address, which can
inflate the number of observed IP addresses at the
botnet C&C server. Short leases (the length of time
for which the allocation is valid) can further mag-
nify this effect. This phenomenon was very com-
mon during our monitoring. In fact, we identified
some ISPs that rotated IP addresses so frequently that
almost every time an infected host connected to us,
it had a new IP address. In one instance, a single
host changed IP addresses 694 times in just 10 days.
In other cases, a host was associated with different
IP addresses on the same autonomous systems but
in different class B/16 subnets. Overall, we observed
706 different machines with more than 100 unique
IP addresses each.

Threats and Data Analysis
In our research, we found that Torpig creates a con-
siderable potential for damage, due not only to the
sheer volume of data it collects but also to the amount
of computing resources the botnet makes available.

N
um

be
r

of
 b

ot
 ID

s/
IP

s

80,000

70,000

60,000

50,000

40,000

30,000

20,000

10,000

0
4 Feb.25 Jan. 27 Jan. 29 Jan. 31 Jan. 2 Feb.

IPs
Bot IDs

Figure 3. Unique bot IDs and IP addresses per hour. The number of unique IP

addresses per hour provides a good estimation of Torpig’s live population.

Malware Analysis

 www.computer.org/security 69

Financial Data Stealing
Torpig specifically goes after information that’s easy
to monetize in the underground market, particular-
ly financial information such as bank accounts and
credit-card numbers. The typical Torpig configu-
ration file lists roughly 300 domains belonging to
banks and other financial institutions that will be the
target of the phishing attacks described earlier.

In 10 days, Torpig obtained the credentials of 8,310
accounts at 410 different institutions. The top targeted
institutions were PayPal (1,770 accounts), Poste Ital-
iane (765), Capital One (314), E*Trade (304), and
Chase (217). At the other end of the spectrum, a large
number of companies had only a handful of compro-
mised accounts; for example, 310 had 10 or fewer. We
noticed that Torpig obtained 38 percent of its stolen
credentials from the browser’s password manager,
rather than by intercepting an actual login session.
(It was possible to infer that number because Torpig
uses different data formats to upload stolen credentials
from different sources.)

Torpig also targets credit-card data. Using a credit-
card validation heuristic that includes the Luhn algo-
rithm, and matching against the correct number of
digits and numeric prefixes of card numbers from the
most popular credit-card companies, we extracted
1,660 unique credit- and debit-card numbers from
our collected data. Based on IP address geolocation,
we surmise that 49 percent of the card numbers came
from victims in the US, 12 percent from Italy, and 8
percent from Spain, with 40 other countries making
up the balance. The most common cards include Visa
(1,056), MasterCard (447), American Express (81),
Maestro (36), and Discover (24).

Quantifying the value of the financial informa-
tion stolen by Torpig is an uncertain process because
of the nature of the underground markets. The 2008
“Symantec Report on The Underground Economy”
(hwww.symantec.com/content/en/us/about/media/
pdfs/Underground_Econ_Report.pdf.) indicated
(loose) ranges of prices for common goods: it priced
credit cards between US$0.10 and $25, and bank ac-
counts from $10 to $1,000. If these figures are accurate,
in 10 days of activity, the Torpig controllers could have
earned anywhere between $83,000 and $8.3 million.

We also wanted to determine the rate at which
the botnet produces new financial information for its
controllers—a botnet that generates all of its value in
a few days and only recycles stale information after-
ward is less valuable than one that steadily produces
fresh data. Although we observed the botnet for only
10 days and therefore can’t draw unequivocal con-
clusions, the Torpig bots did continuously steal and
report new bank accounts and credit-card numbers
during that period.

Password Analysis
A poll conducted by Sophos in March 2009 (www.
sophos.com/pressoffice/news/articles/2009/03/pass-
word-security.html) found that a third of 676 Internet
users surveyed neglect the importance of using strong
passwords and admitted that they reused online au-
thentication credentials across different Web services.
It’s reasonable to trust the results of a poll, but it’s
also important to cross-validate the results, as people
might not always report accurately.

Our takeover of the Torpig botnet offered us the
rare opportunity to obtain the necessary evidence to
validate Sophos’s results. The benefits of the creden-
tial analysis we performed are twofold. First, it makes
it possible to rely on real collected data and not on
user-provided information. Second, the amount of
data we collected from the Torpig- infected machines
was two orders of magnitude bigger than that used in
the Sophos poll.

While we controlled the botnet, Torpig bots stole
297,962 unique credentials (username and password
pairs) sent by 52,540 different Torpig-infected ma-
chines. For each infected host, we retrieved all the
unique username and password pairs it submitted and
calculated the number of distinct Web services each
credential went with. Our analysis found that almost
28 percent of the victims reused their credentials for
accessing 368,501 webpages. While this percent-
age is slightly lower than the Sophos results, it’s close
enough to confirm and validate.

In addition to checking for credential reuse, we
also conducted an experiment to assess the strength
of the 173,686 unique passwords we discovered. To
this end, we created a Unix-like password file to
feed John the Ripper (www.openwall.com/john/),
a popular password cracker tool. The cracker recov-
ered approximately 56,000 passwords in less than 65
minutes by using permutation, substitution, and other
simple replacement rules (the “single” mode). It re-
covered another 14,000 passwords in the next 10 min-
utes when it switched modes to use a large word list,
for a total of more than 40 percent recovered in less
than 75 minutes. Over the next 24 hours, it recovered
an additional 30,000 passwords by brute force (the
 “incremental” mode).

Aftermath
It’s been more than a year since we took over the
Torpig botnet.

Current Status
Over the past year, the Torpig botnet has changed in
interesting ways, particularly as regards its data theft
capabilities and the programs that it targets. Torpig
has improved its man-in-the-browser functionality

Malware Analysis

70 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

and can now dynamically rewrite the HTML con-
tent of specific webpages, using a modified version
of the Sizzle JavaScript library, to hide fraudulent
transactions when a victim logs into a compromised
account. This enables a criminal to transfer money
out of a bank account and extend the amount of time
before the victim is likely to notice. It also increases
the chances that a criminal can clear funds from an
account before the financial institution can revert the
transaction.

Current versions of Torpig also enable the Win-
dows HelpAssistant account that’s accessible via the
Remote Desktop Protocol (RDP). This lets criminals
control the machine remotely through the Windows
GUI, as if they were sitting in front of it. We suspect
that Torpig has this functionality so that criminals can
log in and manually dig through files and documents
on a victim’s machine to steal sensitive data. The mis-
creants appear to be interested in espionage in addi-
tion to financial theft.

Another significant modification is in the com-
munication protocol, which occurred several months
after our experiment. The new protocol is identi-
cal to that used by the Mebroot rootkit, and its en-
cryption is similar to the Data Encryption Standard
(DES). Therefore, it’s harder for researchers and law
enforcement to mimic a Torpig C&C server and to
decrypt and repatriate stolen data. It’s likewise diffi-
cult to determine if the operators of Torpig switched
the encryption algorithm as a direct response to our
work, or if it was simply part of their periodic software
updates and would have occurred anyway. (Mebroot
had already implemented this encryption before our
work with Torpig.)

The Torpig botnet’s size has been relatively stable
since our sinkhole closed in February 2009. Figure 4
shows the number of IP addresses connecting to the
C&C server domain names for 10 days in late Oct ober
and early November of that same year, demonstrat-
ing that despite the attention that the Torpig botnet
received from our work, it has remained virtually
unscathed. Roughly 50,000 infected machines were
online concurrently in November 2009, with a peak
of 80,000 infected machines online at the same time.

Ethical and Legal Considerations
Our experiment in sinkholing the Torpig botnet is
similar to other experiments that recently tried to shed
light on the characteristics of the underground econo-
my.4 These types of studies are tremendously important
for understanding and combating computer crime, but
they have serious ethical implications, as they involve
the computers of unsuspecting users and sometimes
leverage and piggyback on infrastructures created by
criminals. Because of the delicate nature of this work,
researchers must adhere to strict ethical criteria. The
computer security research community has seen a live-
ly debate about these issues recently; for example, the
NDSS symposium in February 2010 featured a panel
titled “Ethics in Networking and Security Research.”

We established two main ethical criteria for our
underground economy research: no user should be
worse off as a result of our activities, and our activi-
ties should be beneficial for society at large. The first
criterion is important because it puts the well-being
of the cybercrime victims above researchers’ desire
to test a hypothesis or perform an experiment. It was
why we decided not to send the victims of the Torpig
botnet a command that would uninstall the malware:
while appealing, this action might have had unpre-
dictable repercussions on the user environment.

The second criterion states that the research should
improve the public’s security. Our experiment had
three societal benefits. First, the financial institutions
involved were able to identify and secure compro-
mised accounts. Second, we provided useful infor-
mation to law enforcement about the inner workings
of the Torpig/Mebroot infrastructure, which might
help in eradicating this threat. Third, by sharing our
experience with the research community, we believe
that we improved the understanding of this type of
malware infrastructure.

Like most computer scientists, we’re neither eth-
ics experts nor lawyers. However, our experience in
carrying out these experiments, as well as discussions
that we had with colleagues after reporting our results,
made us aware of several issues that need attention. One
is that of oversight: some organization, committee, or
other body should be responsible for providing feed-

IP
 a

dd
re

ss
es

100,000

90,000

80,000

70,000

60,000

50,000

40,000

30,000

20,000

10,000

7 Nov. 2
009

6 Nov. 2
009

5 Nov. 2
009

4 Nov. 2
009

3 Nov. 2
009

2 Nov. 2
009

1 Nov. 2
009

31 Oct.
2009

30 Oct.
2009

29 Oct.
2009

Figure 4. Unique IP addresses per hour 30 October 2009 through 7 November

2009. The Torpig botnet still poses a significant threat.

Malware Analysis

 www.computer.org/security 71

back on the ethical soundness of these experiments.
One possible approach is for researchers to seek Institu-
tional Review Board (IRB) approval from their home
institutions before starting any experiments. We didn’t
get prior approval because we weren’t planning to use
human subjects in our experiments, but we did obtain
the necessary approval after realizing that we were col-
lecting personally identifiable information. One limi-
tation of IRB approval agencies is that the members of
the review board might not have the domain-specific
knowledge necessary to fully understand the actual
implications or side effects of an experiment.

Another oversight approach is to have the program
committees (PCs) of computer security conferences
determine what the ethical boundaries are. By accept-
ing or rejecting papers and providing feedback to the
authors, these committees can help shape what are
“acceptable practices” in the security research com-
munity. Unfortunately, the use of PCs to establish
and enforce ethical criteria also has disadvantages.
First, the reviewing process almost never allows for
an appeal in which scientists can explain in detail the
ethical reasoning behind their choices. Second, PCs
usually change substantially across conferences and
even in different years for the same conference. Con-
sequently, it’s difficult to provide consistent feedback
to paper authors.

As security research on the underground economy
expands its focus and intertwines itself with the world
of organized cybercrime, ethical issues will become
even more relevant. We believe that the next few
years will be key in shaping a new ethical stance for
the computer security community, and we hope that

studies like ours might be the starting point for a con-
structive discussion of ethical issues.

The legal aspects of performing network monitor-
ing research are a complicated issue. Often, the vari-
ous parties (criminals, victims, and researchers) reside
in countries all over the world, and what might be
legal in one country might be illegal in another. For
our research, we followed several guidelines set by US
federal law, including the Wiretap Act, the Pen Reg-
ister and Trap and Trace Act, and the Patriot Act. One
of the main points of all these laws governing packet
sniffing (wiretaps) is the intent of those conducting
the monitoring. In addition, 18 U.S.C. §2511 includes
a provider protection clause stating that a system ad-
ministrator can monitor a network to protect the ser-
vice and its users. Courts have generally extended this
protection to include network security researchers
who have some active protection goal in mind.5

We also spoke with a lawyer, whose opinion was
that our collection of information might not be con-
sidered a wiretap because users’ systems volunteered
the data, and we didn’t intercept the information in
transit to a different destination (that is, our server was
the bot software’s intended destination). The lawyer
also thought that because our intent was to help the
victims recover from the compromise of their com-
puter, the collection of the information was legal.

Several lessons emerged from the analysis of the
data we collected, as well as from the process of
obtaining (and losing) the botnet. We found that a
naïve evaluation of botnet size based on the count
of distinct IPs yields grossly overestimated results
(a finding that confirms previous, similar results).

Related Work in Understanding the Botnet Phenomenon

G iven the importance of the botnet problem, researchers have invested significant effort into gaining a better understanding of

the phenomenon. One approach to studying botnets is to perform passive analysis of secondary effects of the activity of compro-

mised machines. For example, researchers have collected spam that was likely sent by bots,1 or they focus on DNS queries2,3 or DNS

blacklist queries4 performed by bot-infected machines. A more active approach to studying botnets is via infiltration, whereby research-

ers join a botnet to perform analysis from the inside using an actual malware sample or a client simulating a bot. To achieve this, they

use honeypots, honey clients, or spam traps to obtain a copy of a malware sample. They then execute the sample in a controlled

environment, which makes it possible to observe the traffic exchanged between the bot and its command-and-control servers.

References
1. L. Zhuang et al., “Characterizing Botnets from Email Spam Records,” Proc. 1st Usenix Workshop Large-Scale Exploits and Emergent Threats, Usenix Assoc.,

2008, www.usenix.org/events/leet08/tech/full_papers/zhuang/zhuang.pdf.

2. M.A. Rajab et al., “A Multifaceted Approach to Understanding the Botnet Phenomenon,” Proc. ACM Internet Measurement Conf., ACM Press, 2006,

pp. 41–52.

3. M.A. Rajab et al., “My Botnet is Bigger than Yours (Maybe, Better than Yours): Why Size Estimates Remain Challenging,” Proc. 1st Usenix Workshop Hot

Topics in Understanding Botnets, Usenix Assoc., 2007; www.usenix.org/event/hotbots07/tech/full_papers/rajab/rajab.pdf.

4. A. Ramachandran, N. Feamster, and D. Dagon, “Revealing Botnet Membership Using DNSBL Counter-Intelligence,” Proc. 2nd Workshop on Steps to

Reducing Unwanted Traffic on the Internet, Usenix Assoc., 2006, pp. 49–54.

Malware Analysis

72 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

In addition, the victims of botnets are often users
with poorly maintained machines that choose eas-
ily guessable passwords to protect access to sensitive
sites. This is evidence that the malware problem
is fundamentally a cultural problem. Finally, we
learned that interacting with registrars, hosting fa-
cilities, victim institutions, and law enforcement is a
rather complicated process.

References
1. N. Provos and P. Mavrommatis, “All Your iFRAMEs

Point to Us,” Proc. 17th Usenix Security Symp., Usenix
Assoc., 2008, pp. 1–15.

2. T. Holz et al., “Measuring and Detecting Fast-Flux
Service Networks,” Proc. 16th Network and Distributed
System Security Symp., Internet Soc., 2008; www.isoc.
org/isoc/conferences/ndss/08/papers/16_measuring
_and_detecting.pdf.

3. M.A. Rajab et al., “My Botnet is Bigger than Yours
(Maybe, Better than Yours): Why Size Estimates Re-
main Challenging,” Proc. 1st Usenix Workshop on Hot
Topics in Understanding Botnets, Usenix Assoc., 2007;
www.usenix.org/event/hotbots07/tech/full_papers/
rajab/rajab.pdf.

4. C. Kanich et al., “Spamalytics: An Empirical Analy-
sis of Spam Marketing Conversion,” Proc. 15th ACM
Conf. Computer and Communications Security, ACM Press,
2008, pp. 3-14.

5. P. Ohm, D. Sicker, and D. Grunwald, “Legal Issues
Surrounding Monitoring During Network Research
(Invited Paper),” Proc. ACM Internet Measurement Conf.,
ACM Press, 2007, pp. 141-148.

Brett Stone-Gross is a PhD candidate in computer science

at the University of California, Santa Barbara, where he’s a

member of the Computer Security Lab. His research interests

involve many facets of the underground Internet economy

including botnets, click fraud, and fake antivirus campaigns.

Stone-Gross is a member of IEEE. Contact him at bstone@

cs.ucsb.edu.

Marco Cova is a lecturer in the School of Computer Science

at the University of Birmingham, UK. His research interests

include Web security, vulnerability analysis, electronic voting

security, and intrusion detection. Cova has a PhD in computer

science from the University of California, Santa Barbara. He’s

a member of IEEE and the IEEE Computer Society. Contact him

at m.cova@cs.bham.ac.uk.

Bob Gilbert is a PhD candidate in computer science at the

University of California, Santa Barbara, where he’s a member

of the Computer Security Lab. His research interests include

malware analysis and malware defense. Gilbert is a member

of IEEE. Contact him at rgilbert@cs.ucsb.edu.

Richard A. Kemmerer is the Computer Science Leadership

Professor and a past department chair of the Department

of Computer Science at the University of California, Santa

Barbara. His research interests include formal specification

and verification of systems, computer system security and

reliability, programming and specification language design,

and software engineering. Kemmerer has a PhD in computer

science from the University of California, Los Angeles. He’s a

fellow of the IEEE Computer Society and of the ACM, and is a

member of the IFIP Working Group 11.3 on Database Security

and of the International Association for Cryptologic Research.

Contact him at kemm@cs.ucsb.edu.

Christopher Kruegel is an associate professor and holder of

the Eugene Aas Chair in Computer Science at the University of

California, Santa Barbara. He’s also involved in the Interna-

tional Secure Systems Lab. His research interests include most

aspects of computer security, with an emphasis on malware

analysis, Web security, network security, and vulnerability

analysis. Contact him at chris@cs.ucsb.edu.

Giovanni Vigna is a professor in the Department of Com-

puter Science at the University of California, Santa Barbara.

His current research interests include malware analysis, Web

security, vulnerability assessment, and intrusion detection. He

has been the program chair of the International Symposium

on Recent Advances in Intrusion Detection (RAID 2003), of

the ISOC Symposium on Network and Distributed Systems Se-

curity (NDSS 2009), and of the IEEE Symposium on Security

and Privacy (S&P 2010 and 2011). Vigna has a PhD from Po-

litecnico di Milano, Italy. He is a member of IEEE and the ACM.

Contact him at vigna@cs.ucsb.edu.

Selected CS articles and columns are also available for
free at http://ComputingNow.computer.org.

LISTEN TO GRADY BOOCH
“On Architecture”

podcast available at http://computingnow.computer.org

