
Protecting a Moving Target:
Addressing Web Application Concept Drift

Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni Vigna
{maggi,wkr,chris,vigna}@cs.ucsb.edu

Computer Security Group
UC Santa Barbara

Abstract. Because of the ad hoc nature of web applications, intrusion
detection systems that leverage machine learning techniques are particu-
larly well-suited for protecting websites. The reason is that these systems
are able to characterize the applications’ normal behavior in an auto-
mated fashion. However, anomaly-based detectors for web applications
suffer from false positives that are generated whenever the applications
being protected change. These false positives need to be analyzed by the
security officer who then has to interact with the web application develop-
ers to confirm that the reported alerts were indeed erroneous detections.
In this paper, we propose a novel technique for the automatic detection
of changes in web applications, which allows for the selective retraining of
the affected anomaly detection models. We demonstrate that, by correctly
identifying legitimate changes in web applications, we can reduce false
positives and allow for the automated retraining of the anomaly models.
We have evaluated our approach by analyzing a number of real-world ap-
plications. Our analysis shows that web applications indeed change sub-
stantially over time, and that our technique is able to effectively detect
changes and automatically adapt the anomaly detection models to the
new structure of the changed web applications.

Keywords: Anomaly Detection, Web Application Security, Concept Drift,
Machine Learning.

1 Introduction

According to a recent study by Symantec [1], web vulnerabilities represent 60%
of all reported security flaws. In particular, site-specific vulnerabilities (i.e., those
that affect custom web applications) are receiving increased attention from online
criminals [2,3]. This is because by exploiting a single vulnerability in a popular site
(e.g., a social networking site or a high-traffic portal), an attacker can infect a large
number of end hosts by spreading malware via web browser exploits (e.g., drive-by
download attacks). Therefore, there is a need for security tools and techniques to
protect web applications and deal with their ad hoc, dynamic nature.

Anomaly-based intrusion detection techniques have been shown to be effec-
tive in protecting web applications against attacks [4,5,6,7,8]. In contrast to mis-
use detection systems, which contain fingerprints of all known attacks patterns,

1

anomaly-based detectors leverage models of the normal behavior of the moni-
tored web applications to detect attacks, under the assumption that attacks cause
anomalies, and anomalies are always associated with malicious activity. Besides an
initial configuration, these tools typically neither require maintenance nor manual
updates to provide protection. For these reasons, they have the advantage of offer-
ing a black-box solution to web application security, even against 0-day exploits
and site-specific attacks. Some anomaly-based web attack detection techniques
are mature enough to be implemented in commercial tools [9,10,11].

A class of anomaly detectors for web applications leverages machine learning
techniques to automatically build models of the normal behavior of the moni-
tored web applications. In this context, the term normal behavior generally refers
to a set of characteristics (e.g., the distribution of the characters of string pa-
rameters, the mean and standard deviation of the values of integer parameters)
extracted from HTTP messages that are observed during normal operation. De-
tection is performed under the assumption that attacks cause significant changes
(i.e., anomalies) in the application behavior. Thus, any activity that does not fit
the expected, learned models is flagged as malicious. Obviously, the detection ac-
curacy strongly depends upon the quality of the models that describe the normal
behavior. On one hand, over-specialization can lead to false positives [12,13]; on
the other hand, over-generalization often results in false negatives [14,15,16].

One issue that has not been well-studied is the difficulty of adapting to changes
in the behavior of the protected applications. By behavior of a web application,
we refer to the features and the functionalities that the application offers and, as
a consequence, the content of the inputs (i.e., the requests) that it process and
the outputs (i.e., the responses) that it produces. This is an important problem
because today’s web applications are user-centric. That is, the demand for new
services causes continuous updates to an application’s logic and its interfaces.

Our analysis reveals that significant changes in the behavior of web applica-
tions are frequent. We refer to this phenomenon as web application concept drift.
In the context of anomaly-based detection, this means that legitimate behavior
might be misclassified as an attack after an update of the application, causing the
generation of false positives. Normally, whenever a new version of an application is
deployed in a production environment, a coordinated effort involving application
maintainers, deployment administrators, and security experts is required. That is,
developers have to inform administrators about the changes that are rolled out,
and the administrators have to update or re-train the anomaly models accordingly.
Otherwise, the amount of false positives will increase significantly. We propose a
solution that makes these tedious tasks unnecessary. Our technique examines the
responses (HTML pages) sent by a web application. More precisely, we check the
forms and links in these pages to determine when new elements are added or old
ones removed. This information is leveraged to identify legitimate changes.

Our technique recognizes when anomalous inputs (i.e., HTTP requests) are
due to previous, legitimate updates (changes) in a web application. In such cases,
false positives are suppressed by automatically and selectively re-training models.
Moreover, when possible, model parameters can be automatically updated with-
out requiring any re-training. Often, a complete re-training would be expensive

2

in terms of time; typically, it requires O(P) where P represents the number of
HTTP messages required to train a model. More importantly, such re-training
is not always feasible since new, attack-free training data is unlikely to be avail-
able immediately after the application has changed. In fact, to collect a sufficient
amount of data the new version of the application must be executed and real, le-
gitimate clients have to interact with it in a controlled environment. Clearly, this
task requires time and efforts. More importantly, those parts that have changed
in the application must be known in advance.

Our approach takes a different perspective. We focus on the fundamental prob-
lem of detecting those parts of the application that have changed and that will
cause false positives if no re-training is performed. Therefore, our technique is
agnostic with respect to the specific training procedure, which can be different
from the one we propose.

In summary, this paper proposes a set of change detection techniques to ad-
dress the concept drift problem by treating the protected web applications as
oracles. We show that HTTP responses contain important insights that can be
effectively leveraged to update previously learned models to take changes into
account. The results of applying our technique on real-world data show that
learning-based anomaly detectors can automatically adapt to changes, and by
doing this, are able to reduce their false positive rate without decreasing their
detection accuracy.

In this paper, we make the following contributions.

– We detail the problem of concept drift in the context of web applications, and
we provide evidence that it occurs in practice, motivating why it is a significant
problem for deploying learning-based anomaly detectors in the real world.

– We present novel techniques based on HTTP response models that can be used
to distinguish between legitimate changes in web applications and web-based
attacks.

– We evaluate a tool incorporating these techniques over an extensive real-world
data set, demonstrating its ability to deal with web application concept drift
and reliably detect attacks with a low false positive rate.

2 Concept drift

To introduce the idea of concept drift, we will use a generalized model of learning-
based anomaly detectors of web attacks. This model is based on the system pre-
sented in [5], but it is general enough to be adapted to virtually any learning-based
anomaly detector for web applications. Also, we show that concept drift is a prob-
lem that exists in the real world, and we motivate why it should be addressed.
Unless differently stated, we use the shorthand term anomaly detector to refer to
anomaly-based detectors that leverage unsupervised machine learning techniques.

2.1 Anomaly detection for web applications

An anomaly detector builds models of normal behavior by observing HTTP mes-
sages exchanged between servers and clients. The traffic directed to the server

3

running a certain web application (e.g., an e-commerce application or a blog)
can be organized into paths, or resources, R = {r1, r2, . . . , rj , . . . }. Each resource
corresponds to a different software module of the application (e.g., an account
manager, a search component). Each resource rj responds to requests, or queries,
Q = {qj,1, qj,2, . . . , qj,i, . . . } that contain sets of name-value parameters trans-
mitted by the client as part of the HTTP request. Each query qj,i is abstracted
as a tuple qj,i = 〈rj , Pq〉, where Pq = {(p1, v1), (p2, v2), . . . , (pk, vk)} ⊆ Pj , and
Pj = P (rj) is the set of all the parameters handled by rj . For instance, the request
‘GET /page?id=21&uid=u43&action=del’ contains the resource r1 = ‘/page’
and the parameters Pq = {〈p1 = id, v1 = 21〉, 〈p2 = uid, v2 = ‘u43’〉, 〈p3 =
action, v3 = ‘del’〉}. Typically, an anomaly detector would use different models
to capture legitimate values associated with each parameter.

In addition to requests, the structure of user sessions can be taken into ac-
count to model the normal states of a server-side application. In this case, the
anomaly detector does not consider individual requests independently, but mod-
els their sequence. This model captures the legitimate order of invocation of the
resources, according to the application logic. An example is when a user is re-
quired to invoke an authentication resource (e.g., /user/auth) before requesting
a private page (e.g., /user/profile). In [5], a session S is defined as a sequence
of resources in R. For instance, given R = {r1, r2, . . . , r10}, a sample session is
S = 〈r3, r1, r2, r10, r2〉.

Finally, HTTP responses that are returned by the server can also be modeled.
For example, in [5], a model m(doc) is presented that takes into account the struc-
ture of documents (e.g., HTML, XML, and JSON) in terms of partial trees that
include security-relevant nodes (e.g., <script /> nodes, nodes containing DOM
event handlers, and nodes that contain sensitive data such as credit card num-
bers). These trees are iteratively merged as new documents are observed, creating
a superset of the allowed document structure and the positions within the tree
where client-side code or sensitive data may appear.

During the learning (or training) phase, given a training set of queries Q and
the corresponding responses, the model parameters are estimated and appropriate
anomaly thresholds are calculated. More precisely, each parameter of a resource
ri is associated with a set of models; this set of models is called a profile: c(·) =
〈m1, m2, . . . ,mu〉. The specific models in c(·) and the strategy to combine their
output determine the classes of attacks that can be detected. The interested reader
is referred to [5,8,17] for more details.

During detection, for each new request q and corresponding response, the
database of profiles is used to calculate an aggregated anomaly score, which takes
into account the anomaly score of the request or the response according to all the
applicable models. In general, an alert is raised if the aggregated anomaly score
is above the threshold learned during training.

In this work, the set of models implemented in webanomaly [5] is used to show
how anomaly detectors can be improved to cope with the problem of concept
drift. However, the techniques we propose in this work can be easily applied to
other anomaly-based detectors.

4

2.2 Web applications are not static

In machine learning, changes in the modeled behavior are known as concept
drift [18]. Intuitively, the concept is the modeled phenomenon (e.g., the struc-
ture of requests to a web server, the recurring patterns in the payload of network
packets). Thus, variations in the main features of the phenomena under consider-
ation result in changes, or drifts, in the concept.

Although the generalization and abstraction capabilities of modern learning-
based anomaly detectors are resilient to noise (i.e., small, legitimate variations in
the modeled behavior), concept drift is difficult to detect and to cope with [19].
The reason is that the parameters of the models may stabilize to different values.
For instance, a string length model could calculate the sample mean and variance
of the string lengths that are observed during training. Then, during detection,
the Chebyshev inequality is used to detect strings with lengths that significantly
deviate from the mean, taking into account the observed variance. Clearly, small
differences in the lengths of strings will be considered normal. On the other hand,
the mean and variance of the string lengths can completely change because of
legitimate and permanent modifications in the web application. In this case, the
normal mean and variance will stabilize, or drift, to completely different values.
If appropriate re-training or manual updates are not performed, the model will
classify benign, new strings as anomalous. This might be a human-intensive ac-
tivity requiring substantial expertise. Therefore, having an automated, black-box
mechanism to adjust the parameters is clearly very desirable.

Changes in web applications can manifest themselves in several ways. In the con-
text of learning-based detection of web attacks, those changes can be categorized
into three groups: request changes, session changes, and response changes.

Request changes. Changes in requests occur when an application is upgraded
to handle different HTTP requests. These changes can be further divided into two
groups: parameter value changes and request structure changes. The former involve
modifications of the actual value of the parameters, while the latter occur when
parameters are added or removed. Parameter renaming is the result of removal
plus addition.

Example. A new version of a web forum introduces internationalization (I18N)
and localization (L10N). Besides handling different languages, I18N and L10N al-
low several types of strings to be parsed as valid dates and times. For instance,
valid strings for the datetime parameter are ‘3 May 2009 3:00’, ‘3/12/2009’,
‘3/12/2009 3:00 PM GMT-08’, ‘now’. In the previous version, valid date-time
strings had to conform to the regular expression ‘[0-9]{1,2}/[0-9]{2}/[0-
9]{4}’. A model with good generalization properties would learn that the field
datetime is composed of numbers and slashes, with no spaces. Thus, other strings
such as ‘now’ or ‘3/12/2009 3:00 PM GMT-08’ would be flagged as anomalous.
Also, in our example, tz and lang parameters have been added to take into ac-
count time zones and languages. To summarize, the new version introduces two
classes of changes. Clearly, the parameter domain of datetime is modified. Sec-
ondly, new parameters are added.

5

Changes in HTTP requests directly affect the request models. First, parameter
value changes affect any models that rely on the parameters’ values to extract
features. For instance, consider two of the models used in the system described
in [5]: m(char) and m(struct). The former models the strings’ character distribution
by storing the frequency of all the symbols found in the strings during training,
while the latter models the strings’ structure as a stochastic grammar, using a
Hidden Markov Model (HMM). In the aforementioned example, the I18N and
L10N introduce new, legitimate values in the parameters; thus, the frequency of
numbers in m(char) changes and new symbols (e.g., ‘-’, ‘[a-zA-Z]’ have to be
taken into account. It is straightforward to note that m(struct) is affected in terms
of new transitions introduced in the HMM by the new strings. Secondly, request
structure changes may affect any type of request model, regardless of the specific
characteristics. For instance, if a model for a new parameter is missing, requests
that contain that parameter might be flagged as anomalous.

Session changes. Changes in sessions occur whenever resource path sequences
are reordered, inserted, or removed. Adding or removing application modules in-
troduces changes in the session models. Also, modifications in the application
logic are reflected in the session models as reordering of the resources invoked.

Example. A new version of a web-based community software grants read-
only access to non-authenticated users, allowing them to display contents pre-
viously available to subscribed users only. In the old version, legitimate sequences
were 〈/site, /auth, /blog〉 or 〈/site, /auth, /files〉, where /site indicates the
server-side resource that handles the public site, /auth is the authentication re-
source, and /blog and /files were formerly private resources. Initially, the prob-
ability of observing /auth before /blog or /files is close to one (since users need
to authenticate before accessing private material). This is no longer true in the
new version, however, where /files|/blog|/auth are all possible after /site.

Changes in sessions impact all models that rely on the sequence of resources
that are invoked during the normal operation of an application. For instance,
consider the model m(sess) described in [5], which builds a probabilistic finite
state automaton that captures sequences of resource paths. New arcs must be
added to take into account the changes mentioned in the above example. These
types of models are sensitive to strong changes in the session structure and should
be updated accordingly when they occur.

Response changes. Changes in responses occur whenever an application is
upgraded to produce different responses. Interface redesigns and feature addition
or removal are example causes of changes in the responses. Response changes are
common and frequent, since page updates or redesigns often occur in modern
websites.

Example. A new version of a video sharing application introduces Web 2.0
features into the user interface, allowing for the modification of user interface
elements without refreshing the entire page. In the old version, relatively few
nodes of documents generated by the application contained client-side code. In

6

the new version, however, many nodes of the document contain event handlers to
trigger asynchronous requests to the application in response to user events. Thus,
if a response model is not updated to reflect the new structure of such documents,
a large of number of false positives will be generated due to legitimate changes in
the characteristics of the web application responses.

2.3 Prevalence of concept drift

To understand whether concept drift is a relevant issue for real-world websites, we
performed three experiments. For the first experiment, we monitored 2,264 public
websites, including the Alexa Top 500 and other sites collected by querying Google
with popular terms extracted from the Alexa Top 500. The goal was to identify
and quantify the changes in the forms and input fields of popular websites at large.
This provides an indication of the frequency with which real-world applications
are updated or altered.

Once every hour, we visited one representative page for each of the 2,264 web-
sites. In total, we collected 3,303,816 pages, comprising more than 1,390 snapshots
for each website, between January 29 and April 13, 2009. One tenth of the repre-
sentative pages were manually selected to have a significant number of forms, in-
put fields, and hyperlinks with parameters (e.g., <a href="/login?anon=true&-
lang=en" />). By doing this, we gathered a considerable amount of information
regarding the HTTP messages generated by some applications. Examples of these
pages are registration pages, data submission pages, or contact form pages. For
the remaining websites, we simply used their home pages.

For each website w, each page sample crawled at time t is associated with a
tuple |F |(w)

t , |I|(w)
t , the cardinality of the sets of forms and input fields, respec-

tively. By doing this, we collected samples of the variables |F |w = |F |wt1 , . . . , |F |
w
tn

,
|I|w = |I|wt1 , . . . , |I|

w
tn

, with 0 < n <∼ 1, 390. Figure 1 shows the relative frequency
of the variables XI = stdev(|I|(w1)), . . . , stdev(|I|(wk)) and XF = stdev(|F |(w1)),
. . . , stdev(|F |(wk)). This demonstrates that a significant amount of websites ex-
hibit variability in the response models, in terms of elements modified in the pages,
as well as request models, in terms of new forms and parameters. In addition, we
estimated the expected time between changes of forms and inputs fields, E[TF]
and E[TI], respectively. In terms of forms, 40.72% of the websites drifted during
the observation period. More precisely, 922 out of 2,264 websites have a finite
E[TF]. Similarly, 29.15% of the websites exhibited drifts in the number of input
fields, i.e., E[TI] < +∞ for 660 websites. Figure 1 shows the relative frequency of
(b) E[TF], and (d) E[TI]. E[TF]. This confirms that a non-negligible portion of
the websites exhibit significantly frequent changes in the responses.

For the second experiment, we monitored in depth three large, data-centric
web applications over several months: Yahoo! Mail, YouTube, and MySpace. We
dumped HTTP responses captured by emulating user interaction using a custom,
scriptable web browser implemented with HtmlUnit. Examples of these interac-
tions are as follows: visit the home page, login, browse the inbox, send messages,
return to the home page, click links, log out. Manual inspection revealed some
major changes in Yahoo! Mail. For instance, the most evident change consisted of

7

stdev(|F |)

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
50

10
0

15
0

20
0

(a) Changes of forms.

E[T] between changes in |F | [hours]

F
re

qu
en

cy

0 100 200 300 400

0
50

10
0

15
0

(b) Avg. time between changes in |F |.

stdev(|I|)

F
re

qu
en

cy

0 10 20 30 40

0
10

0
20

0
30

0
40

0

(c) Changes of inputs.

E[T] between changes in |I| [hours]

F
re

qu
en

cy

0 100 200 300 400

0
10

0
20

0
30

0
40

0

(d) Avg. time between changes in |I|

Fig. 1: Relative frequency of the standard deviation of the number of forms (a) and input
fields (c). Also, the distribution of the expected time between changes of forms (b) and
input fields (d) are plotted. A non-negligible portion of the websites exhibits changes in
the responses.

a set of new features added to the search engine (e.g., local search, refined address
field in maps search), which manifested themselves as new parameters found in
the web search page (e.g. to take into account the country or the ZIP code). User
pages of YouTube were significantly updated with new functionalities between
2008 and 2009. For instance, the new version allows users to rearrange widgets
in their personal pages. To account for the position of each element, new param-
eters are added to the profile pages and submitted asynchronously whenever the
user drags widgets within the layout. The analysis on MySpace did not reveal
any significant change. The results of these two experiments show that changes in
server-side applications are common. More importantly, these modifications often
involve the way user data is represented, handled, and manipulated.

For the third experiment, we analyzed changes in the requests and sessions by
inspecting the code repositories of three of the largest, most popular open-source
web applications: WordPress, Movable Type, and PhpBB. The goal was to under-

8

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 900000

01
/0

1/
03

01
/0

1/
04

01
/0

1/
05

01
/0

1/
06

01
/0

1/
07

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

Li
ne

s
of

 C
od

e

(a) PhpBB

 280000

 300000

 320000

 340000

 360000

 380000

 400000

 420000

 440000

 460000

 480000

01
/0

1/
03

01
/0

7/
03

01
/0

1/
04

01
/0

7/
04

01
/0

1/
05

01
/0

7/
05

01
/0

1/
06

01
/0

7/
06

01
/0

1/
07

01
/0

7/
07

01
/0

1/
08

01
/0

7/
08

01
/0

1/
09

01
/0

7/
09

(b) WordPress

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 850000

01
/0

4/
06

01
/0

7/
06

01
/1

0/
06

01
/0

1/
07

01
/0

4/
07

01
/0

7/
07

01
/1

0/
07

01
/0

1/
08

01
/0

4/
08

01
/0

7/
08

01
/1

0/
08

01
/0

1/
09

01
/0

4/
09

(c) Movable Type

Fig. 2: Lines of codes in the repositories of PhpBB, WordPress, and Movable Type, over
time. Counts include only the code that manipulates HTTP responses, requests and
sessions.

stand whether upgrading a web application to a newer release results in significant
changes in the features that are used to determine its behavior. In this analysis,
we examined changes in the source code that affect the manipulation of HTTP
responses, requests, and session data. We used StatSVN, an open-source tool for
tracking and visualizing the activity of SVN repositories (e.g., the number of lines
changed or the most active developers). We modified StatSVN to incorporate a set
of heuristics to compute approximate counts of the lines of code that, directly or
indirectly, manipulate HTTP session, request or response data. In the case of PHP,
examples representative of such lines include, but are not limited to, REQUEST| -
SESSION| POST| GET|session |http |strip tags|addslashes. In order to take
into account data manipulation performed through library functions (e.g., Word-
Press’ custom Http class), we also generated application-specific code patterns by
manually inspecting and filtering the core libraries. Figure 2 shows, over time,
the lines of code in the repositories of PhpBB, WordPress, and Movable Type that
manipulate HTTP responses, requests and, sessions. These results show the pres-
ence of significant modifications in the web application in terms of relevant lines
of code added or removed. More importantly, such modifications affect the way
HTTP data is manipulated and, thus, impact request, response or session models.

The aforementioned experiments confirm that the class of changes we de-
scribed in Section 2.2 is common in real-world web applications. Therefore, we
conclude that anomaly detectors for web applications must incorporate proce-
dures to prevent false alerts due to concept drift. In particular, a mechanism is
needed to discriminate between legitimate and malicious changes, and respond
accordingly.

3 Addressing concept drift

In this section, we first present our technique to distinguish between legitimate
changes in web application behavior and evidence of malicious behavior. We then
discuss how a web application anomaly detection system can effectively handle
legitimate concept drift.

9

3.1 The web application as oracle

The body of HTTP responses contains a set of links Li and forms Fi that refer
to a set of target resources. Each form also includes a set of input fields Ii. In
addition, each link li,j ∈ Li and form fi,j ∈ Fi has an associated set of parameters.

From a resource ri, the client clicks upon a link li,j or submits a form fi,j .
Either of these actions generates a new HTTP request to the web application
with a set of parameter key-value pairs, resulting in the return of a new HTTP
response to the client, ri+1, the body of which contains a set of links Li+1 and
forms Fi+1. This process continues until the session has ended (i.e., either the
user has explicitly logged out, or a timeout has occurred).

Our key observation is that, at each step of a web application session, the
set of potential target resources is given exactly by the content of the current
resource. That is, given ri, the associated sets of links Li and forms Fi directly
encode a significant sub-set of the possible ri+1. Furthermore, each link li,j and
form fi,j indicates a precise set of expected parameters and, in some cases, the
set of legitimate values for those parameters that can be provided by a client.

Example. Consider a hypothetical banking web application, where the current
resource ri = /account presented to a client is an account overview contain-
ing a set of links Li = {/account/history?aid=328849660322, /account/his-
tory?aid=446825759916, /account/transfer, /logout} and forms (represented
as their target action) Fi = {/feedback, /search}.

From Li and Fi, we can deduce the set of legal candidate resources for the
next request ri+1. Any other resource would, by definition, be a deviation from
a legal session flow through the web application as specified by the application
itself. For instance, it would not be expected behavior for a client to directly access
/account/transfer/submit (i.e., a resource intended to submit an account funds
transfer) from ri. Furthermore, for the resource /account/history, it is clear that
the web application expects to receive a single parameter aid with an account
number as an identifier.

In the case of the form with target /feedback, let the associated input elements
be:

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

</select>

<textarea name="message" />

It immediately follows that any invocation of the /feedback resource from
ri should include the parameters subject and message. In addition, the legal
set of values for the parameter subject is given by enumerating the enclosed
<option /> tags. Similarly, valid values for the new tz and datetime parameters
mentioned in the example of Section 2.2 can be inferred. Any deviation from these
specifications could be considered evidence of malicious behavior.

We conclude that the responses generated by a web application constitute a
specification of the intended behavior of clients and the expected inputs to an

10

application’s resources. As a consequence, when a change occurs in the interface
presented by a web application, this will be reflected in the content of its responses.
Therefore, as detailed in the following section, our anomaly detection system
performs response modeling to detect and adapt to changes in monitored web
applications.

3.2 Adaptive response modeling

In order to detect changes in web application interfaces, the response modeling
of webanomaly has been augmented with the ability to build Li and Fi from the
HTML documents returned to a client. The approach is divided into two phases.

Extraction and parsing. The anomaly detector parses each HTML document
contained in a response issued by the web application to a client. For each <a />
tag encountered, the contents of the href attribute is extracted and analyzed.
The link is decomposed into tokens representing the protocol (e.g., http, https,
javascript, mailto), target host, port, path, parameter sequence, and anchor.
Paths are subject to additional processing; for instance, relative paths are nor-
malized to obtain a canonical representation. This information is stored as part
of an abstract document model for later processing.

A similar process occurs for forms. When a <form /> tag is encountered,
the action attribute is extracted and analyzed as in the case of the link href
attribute. Furthermore, any <input />, <textarea />, or <select /> and <op-
tion /> tags enclosed by a particular <form /> tag are parsed as parameters
to the corresponding form invocation. For <input /> tags, the type, name, and
value attributes are extracted. For <textarea /> tags, the name attribute is
extracted. Finally, for <select /> tags, the name attribute is extracted, as well
as the content of any enclosed <option /> tags. The target of the form and its
parameters are recorded in the abstract document model as in the case for links.

Analysis and modeling. The set of links and forms contained in a response is
processed by the anomaly engine. For each link and form, the corresponding target
resource is compared to the existing known set of resources. If the resource has not
been observed before, a new model is created for that resource. The session model
is also updated to account for a potential transition from the resource associated
with the parsed document and the target resource by training on the observed
session request sequence.

For each of the parameters parsed from links or forms contained in a response, a
comparison with the existing set of known parameters is performed. If a parameter
has not already been observed (e.g., the new tz parameter), a profile is created
and associated with the target resource model.

Any values contained in the response for a given parameter are processed
as training samples for the associated models. In cases where the total set of
legal parameter values is specified (e.g., <select /> and <option /> tags), the
parameter profile is updated to reflect this. Otherwise, the profile is trained on
subsequent requests to the associated resource.

11

Client Anomaly detector Web app. server

qi

Parsing

Change or attack?

Li, Fi

qi

respirespi

qi+1 qi+1

Fig. 3: A representation of the interaction between the client and the web application
server, monitored by a learning-based anomaly detector. After request qi is processed,
the corresponding response respi is intercepted and link Li and forms Fi are parsed to
update the request models. This knowledge is exploited as a change detection criterion
for the subsequent request qi+1.

As a result of this analysis, the anomaly detector is able to adapt to changes
in session structure resulting from the introduction of new resources. In addition,
the anomaly detector is able to adapt to changes in request structure resulting
from the introduction of new parameters and, in a limited sense, to changes in
parameter values.

3.3 Advantages and limitations

Due to the response modeling algorithm described in the previous section, our
web application anomaly detector is able to automatically adapt to many com-
mon changes observed in web applications as modifications are made to the in-
terface presented to clients. Both changes in session and request structure such
as those described in Section 2.2 can be accounted for in an automated fashion.
For instance, the I18N and L10N modification of the aforementioned example is
correctly handled as it consists in an addition of the tz parameter and a modi-
fication of the datetime parameter. Furthermore, we claim that web application
anomaly detectors that do not perform response modeling cannot reliably distin-
guish between anomalies caused by legitimate changes in web applications and
those caused by malicious behavior. Therefore, as will be shown in Section 4, any
such detector that solely monitors requests is more prone to false positives in the
real world.

Clearly, the technique relies upon the assumption that the web application
has not been compromised. Since the web application, and in particular the doc-
uments it generates, is treated as an oracle for whether a change has occurred, if
an attacker were to compromise the application in order to introduce a malicious
change, the malicious behavior would be learned as normal by our anomaly de-
tector. Of course, in this case, the attacker would already have access to the web
application. However, we remark that our anomaly detector observes all requests
and responses to and from untrusted clients, therefore, any attack that would
compromise response modeling would be detected and blocked. For example, an
attacker could attempt to evade the anomaly detector by introducing a malicious
change in the HTTP responses and then exploits the change detection technique
that would interpret the new malicious request as a legit change. For instance,
the attacker could incorporate a link that contain a parameter used to inject the

12

attack vector. To this end, the attacker would have to gain control of the server by
leveraging an existing vulnerability1 of the web application (e.g., a buffer overflow,
a SQL injection). However, the HTTP requests used by the attacker to exploit
the vulnerability will trigger several models (e.g., the string length model, in the
case of a buffer overflow) and, thus, will be flagged as anomalous. In fact, our
technique does not alter the ability of the anomaly detector to detect attacks. On
the other hand, it avoids many false positives, as demonstrated in Section 4.2.

Besides the aforementioned assumptions, three limitations are important to
note. First, the set of target resources may not always be statically derivable
from a given resource. For instance, this can occur when client-side scripts are
used to dynamically generate page content, including links and forms. Accounting
for dynamic behavior would require the inclusion of script interpretation. This,
however, has a high overhead, is complex to perform accurately, and introduces
the potential for denial of service attacks against the anomaly detection system.
For these reasons, we have not included such a component in the current system,
although further research is planned to deal with dynamic behavior. Moreover, as
Section 4 demonstrates, the proposed technique performs well in practice.

Second, the technique does not fully address changes in the behavior of indi-
vidual request parameters in its current form. In cases where legitimate parameter
values are statically encoded as part of an HTML document, response modeling
can directly account for changes in the legal set of parameter values. Unfortu-
nately, in the absence of any other discernible changes in the response, changes in
parameter values provided by clients cannot be detected. However, heuristics such
as detecting when all clients switch to a new observable behavior in parameter
values (i.e., all clients generate anomalies against a set of models in a similar way)
could serve as an indication that a change in legitimate parameter behavior has
occurred.

Third, the technique cannot handle the case where a resource is the result of
a parametrized query and the previous response has not been observed by the
anomaly detector. In our experience, however, this does not occur frequently in
practice, especially for sensitive resources.

4 Evaluation

In this section, we show that our techniques reliably distinguish between legitimate
changes and evidence of malicious behavior, and present the resulting improve-
ment in terms of detection accuracy.

The goal of this evaluation is twofold. We first show that concept drift in mod-
eled behavior caused by changes in web applications results in lower detection
accuracy. Second, we demonstrate that our technique based on HTTP responses
effectively mitigates the effects of concept drift. In both the experiments, the test-
ing data set includes samples of the most common types of attacks against web

1 The threat model assumes that the attacker can interact with the web application
only by sending HTTP requests.

13

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Detection accuracy (Q)
Detection accuracy (Qdrift)

(a) Response modeling disabled.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Detection accuracy (Q)
Detection accuracy (Qdrift)

(b) Response modeling enabled.

Fig. 4: Detection and false positive rates measured on Q and Qdrift, with HTTP response
modeling enabled in (b).

applications such as cross-site scripting (XSS) (e.g., CVE-2009-0781), SQL injec-
tions (e.g., CVE-2009-1224), and command execution exploits (e.g., CVE-2009-
0258) that are reflected in request parameter values. In particular, we included
a total of 1000 attacks, comprised of 400 XSS attacks, 400 SQL injections, and
200 command injections. The XSS attacks are variations on those listed in [20],
the SQL injections were created similarly from [21], and the command execution
exploits were variations of common command injections against the Linux and
Windows platforms.

In both experiments, webanomaly was evaluated on a data set consisting of
HTTP traffic drawn from real-world web applications. This data was obtained
from several monitoring points at both commercial and academic sites. For each
application, the full contents of each HTTP connection observed over a period of
several months were recorded. The resulting flows were filtered using signature-
based techniques to remove known attacks, and then partitioned into distinct
training and test sets. In total, the data set contains 823 unique web applications,
36,392 unique resource paths, 16,671 unique parameters, and 58,734,624 HTTP
requests.

4.1 Effects of concept drift

In the first experiment, we demonstrate that concept drift as observed in real-
world web applications results in a significant negative impact on false positive
rates. First, webanomaly was trained on an unmodified, filtered data set. Then,
the detector analyzed a test data set Q to obtain a baseline ROC curve.

After the baseline curve had been obtained, the test data set was processed to
introduce new behaviors corresponding to the effects of web application changes,
such as upgrades or source code refactoring, obtaining Qdrift. In this manner, the
set of changes in web application behavior was explicitly known. In particular,
as detailed in Table 1, 6,749 new session flows were created by introducing re-
quests for new resources and creating request sequences for both new and known
resources that had not previously been observed. Also, new parameter sets were

14

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Table 1: Reduction in the false positive rate due to HTTP response modeling for various
types of changes.

created by introducing 6,750 new parameters to existing requests. Finally, the
behavior of modeled features of parameter values was changed by introducing
5,785 mutations of observed values in client requests. For example, each sequence
of resources 〈/login, /index, /article〉 might be transformed to 〈/login,
/article〉. Similarly, each request like /categories found in the traffic might be
replaced with /foobar. For new parameters, a set of link or form parameters might
be updated by changing a parameter name and updating requests accordingly.

It must be noted that in all cases, responses generated by the web application
were modified to reflect changes in client behavior. To this end, references to new
resources were inserted in documents generated by the web application, and both
links and forms contained in documents were updated to reflect new parameters.

webanomaly – without the HTTP response modeling technique enabled – was
then run over Qdrift to determine the effects of concept drift upon detector ac-
curacy. The resulting ROC curves are shown in Figure 4a. The consequences of
web application change are clearly reflected in the increase in false positive rate
for Qdrift versus that for Q. Each new session flow and parameter manifests as
an alert, since the detector is unable to distinguish between anomalies due to
malicious behavior and those due to legitimate change in the web application.

4.2 Change detection

The second experiment quantifies the improvement in the detection accuracy of
webanomaly in the presence of web application change. As before, the detector
was trained over an unmodified filtered data set, and the resulting profiles were
evaluated over both Q and Qdrift. In this experiment, however, the HTTP response
modeling technique was enabled.

Figure 4b presents the results of analyzing HTTP responses on detection ac-
curacy. Since many changes in the behavior of the web application and its clients
can be discovered using our response modeling technique, the false positive rate
for Qdrift is greatly reduced over that shown in Figure 4a, and approaches that of
Q, where no changes have been introduced. The small observed increase in false
positive rate can be attributed to the effects of changes in parameter values. This
occurs because a change has been introduced into a parameter value submitted
by a client to the web application, and no indication of this change was detected
on the preceding document returned to the client (e.g., because no <select />
were found).

Table 1 displays the individual contributions to the reduction of the false pos-
itive rate due to the response modeling technique. Specifically, the total number

15

of anomalies caused by each type of change, the number of anomalies erroneously
reported as alerts, and the corresponding reduction in the false positive rate is
shown. The results displayed were generated from a run using the optimal operat-
ing point (0.00144, 0.97263) indicated by the knee of the ROC curve in Figure 4b.
For changes in session flows and parameters sets, the detector was able to identify
an anomaly as being caused by a change in web application behavior in all cases.
This resulted in a large net decrease in the false positive rate of the detector with
response modeling enabled. The modification of parameters is more problematic,
though; as discussed in Section 3.3, it is not always apparent that a change has
occurred when that change is limited to the type of behavior a parameter’s value
exhibits.

From the overall improvement in false positive rates, we conclude that HTTP
response modeling is an effective technique for distinguishing between anomalies
due to legitimate changes in web applications and those caused by malicious
behavior. Furthermore, any anomaly detector that does not do so is prone to
generating a large number of false positives when changes do occur in the modeled
application. Finally, as it has been shown in Section 2, web applications exhibit
significant long-term change in practice, and, therefore, concept drift is a critical
aspect of web application anomaly detection that must be addressed.

5 Related work

Anomaly-based IDSs have evolved considerably after Denning’s seminal paper
on intrusion detection [22]. Besides network-based detection [23], anomaly-based
techniques have been also exploited to protect the operating system. In [24],
the normal behavior of applications is captured by modeling system call se-
quences [25,26] along with features of their arguments. In [27], a mixture of ma-
chine learning techniques is exploited to detect anomalous system calls in the
Linux kernel. Ad-hoc distances between system calls are defined to perform clus-
tering in order to identify natural classes of similar calls. The reduced size of the
clustered input makes the training of Markov chains efficient. The behavior of each
host application is modeled as Markov chains on which probabilistic thresholds
are calculated to detect misbehaving sequences.

PAYL [28] is a network-based anomaly detection system. It creates models of
each service’s normal behavior by recording byte frequencies of network streams.
This approach has been further explored in [29], where higher-order n-grams are
used instead of frequencies. Instead, [30] exploits self-organizing maps to classify
the payload of IP frames in order to separate normal packets from malicious ones.

Anomaly-based detectors of web attacks have been first proposed in [5], where
a multi-model approach to characterizing the normal behavior of web application
parameters is proposed.

A tool to protect against code-injection attacks has been recently proposed
in [17]. The approach exploits a mixture of Markov chains to model legitimate
payloads at the HTTP layer. The computational complexity of n-grams with large
n is solved using Markov chain factorization, making the system algorithmically
efficient.

16

HTTP responses are exploited in [8]. Besides other features, the DOM is mod-
eled to enhance the detection capabilities of SQL injection and cross-site scripting
attacks. The fact that it relies on HTTP responses makes this approach similar
to ours. However, we exploit HTTP responses to detect changes and update other
anomaly models accordingly, instead of modeling responses per se.

A complementary tool is proposed in [6], where an approach to improve the
explanatory power of anomaly-based detectors is proposed along with a cluster-
ing and classification methodology to reduce their false positive rate. Another
technique to increase detection accuracy is presented in [31], where Bayesian net-
works are exploited to combine models and define inter-model dependencies. The
resulting system shows a significant reduction in false alerts.

Reduction of false positives in anomaly detection systems has also been stud-
ied in [13]. Similar behavioral profiles for individual hosts are grouped together
using a k-means clustering algorithm. However, the distance metric used was not
explicitly defined. Coarse network statistics such as the average number of hosts
contacted per hour, the average number of packets exchanged per hour, and the
average length of packets exchanged per hour are all examples of metrics used to
generate behavior profiles. A voting scheme is used to generate alerts, in which
alert-triggering events are evaluated against profiles from other members of that
cluster. Events that are deemed anomalous by all members generate alerts.

6 Conclusions

In this work, we have identified the natural dynamicity of web applications as an
issue that must be addressed by modern anomaly-based web application anomaly
detectors in order to prevent increases in the false positive rate whenever the
monitored web application is changed. We refer to this frequent phenomenon the
web application concept drift.

We propose the use of novel HTTP response modeling techniques to discrim-
inate between legitimate changes and anomalous behaviors in web applications.
More precisely, responses are analyzed to find new and previously unmodeled
parameters. This information is extracted from anchors and forms elements, and
then leveraged to update request and session models. We have evaluated the effec-
tiveness of our approach over an extensive real-world data set of web application
traffic. The results show that the resulting system can detect anomalies and avoid
false alerts in the presence of concept drift.

As future work, we plan to investigate the potential benefits of modeling the
behavior of JavaScript code, which is becoming increasingly prevalent in modern
web applications. Also, additional, richer, and media-dependent response models
must be studied to account for interactive client-side components, such as Adobe
Flash and Microsoft Silverlight applications.

References

1. Turner, D., Fossi, M., Johnson, E., Mark, T., Blackbird, J., Entwise, S., Low, M.K.,
McKinney, D., Wueest, C.: Symantec Global Internet Security Threat Report –

17

Trends for July-December 07. Technical Report XII, Symantec Corporation (April
2008)

2. Ofer Shezaf and Jeremiah Grossman and Robert Auger: Web Hacking Incidents
Database. http://whid.xiom.org (March 2009)

3. Open Security Foundation: DLDOS: Data Loss Database – Open Source. http:

//datalossdb.org/ (March 2009)
4. Cho, S., Cha, S.: SAD: web session anomaly detection based on parameter estima-

tion. In: Computers & Security. Volume 23. (2004) 312–319
5. Kruegel, C., Robertson, W., Vigna, G.: A Multi-model Approach to the Detection

of Web-based Attacks. Journal of Computer Networks 48(5) (July 2005) 717–738
6. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.A.: Using Generalization and

Characterization Techniques in the Anomaly-based Detection of Web Attacks. In:
Proceedings of the Network and Distributed System Security Symposium (NDSS
2006), San Diego, CA, USA (February 2006)

7. Guangmin, L.: Modeling Unknown Web Attacks in Network Anomaly Detection.
In: Proceedings of the 3rd International Conference on Convergence and Hybrid
Information Technology (ICCIT 2008), Washington, DC, USA, IEEE Computer
Society (2008) 112–116

8. Zanero, S., Criscione, C.: Masibty: A Web Application Firewall based on Anomaly
Detection. In: DeepSec - In-depth security conference. (November 2008)

9. Citrix Systems, Inc.: Citrix Application Firewall. http://www.citrix.com/

English/PS2/products/product.asp?contentID=25636 (January 2009)
10. F5 Networks, Inc.: BIG-IP Application Security Manager. http://www.f5.com/

products/big-ip/product-modules/application-security-manager.html (Jan-
uary 2009)

11. Breach Security, Inc.: Breach WebDefend. http://www.breach.com/products/

webdefend.html (January 2009)
12. Axelsson, S.: The Base-Rate Fallacy and its Implications for the Difficulty of Intru-

sion Detection. In: Proceedings of the ACM Conference on Computer and Commu-
nications Security (CCS 1999), New York, NY, USA, ACM (1999) 1–7

13. Frias-Martinez, V., Stolfo, S.J., Keromytis, A.D.: Behavior-Profile Clustering for
False Alert Reduction in Anomaly Detection Sensors. In: Proceedings of the Annual
Computer Security Applications Conference (ACSAC 2008), Anaheim, CA, USA
(December 2008)

14. Escalante, H.J., Fuentes, O.: Kernel Methods for Anomaly Detection and Noise
Elimination. In: Proceedings of the International Conference on Computing (CORE
2006), Mexico City, Mexico 69–80

15. Kim, S.i., Nwanze, N.: Noise-Resistant Payload Anomaly Detection for Network
Intrusion Detection Systems. In: Proceedings of the Performance, Computing and
Communications Conference (IPCCC 2008), Austin, TX, USA, IEEE Computer
Society (December 2008) 517–523

16. Cretu, G.F., Stavrou, A., Locasto, M.E., Stolfo, S.J., Keromytis, A.D.: Casting out
Demons: Sanitizing Training Data for Anomaly Sensors. In: Proceedings of the 2008
IEEE Symposium on Security and Privacy (S&P 2008), Oakland, CA, USA, IEEE
Computer Society (May 2008) 81–95

17. Song, Y., Stolfo, S., Keromytis, A.: Spectrogram: A Mixture-of-Markov-Chains
Model for Anomaly Detection in Web Traffic. In: Proc of the 16th Annual Network
and Distributed System Security Symposium (NDSS). (2009)

18. Schlimmer, J., Granger, R.: Beyond incremental processing: Tracking concept drift.
In: Proceedings of the Fifth National Conference on Artificial Intelligence. Volume 1.
(1986) 502–507

18

19. Kolter, J., Maloof, M.: Dynamic weighted majority: An ensemble method for drifting
concepts. The Journal of Machine Learning Research 8 (2007) 2755–2790

20. Robert Hansen (RSnake): XSS (Cross Site Scripting) Cheat Sheet. http://ha.

ckers.org/xss.html (June 2009)
21. Ferruh Mavituna: SQL Injection Cheat Sheet. http://ferruh.mavituna.com/

sql-injection-cheatsheet-oku/ (June 2009)
22. Denning, D.E.: An Intrusion-Detection Model. IEEE Transactions on Software

Engineering 13(2) (1987) 222–232
23. Lee, W., Stolfo, S.J.: A Framework for Constructing Features and Models for In-

trusion Detection Systems. ACM Transactions on Information and System Security
3(4) (2000) 227–261

24. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomaly system call detection. ACM
Transactions on Information and System Security 9(1) (February 2006) 61–93

25. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix
Processes. In: Proceedings of the IEEE Symposium on Security and Privacy (S&P
1996), Oakland, CA, USA, IEEE Computer Society (May 1996) 120–128

26. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: Proceedings of
the IEEE Symposium on Security and Privacy (S&P 2001), Oakland, CA, USA,
IEEE Computer Society (2001) 156–168

27. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call
sequence and argument analysis. IEEE Transactions on Dependable and Secure
Computing 99(1) (5555)

28. Wang, K., Stolfo, S.J.: Anomalous Payload-based Network Intrusion Detection.
In: Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (RAID 2004), Springer-Verlag (September 2004)

29. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Re-
sistant to Mimicry Attack. In: Proceedings of the International Symposium on Re-
cent Advances in Intrusion Detection (RAID 2006), Hamburg, GR, Springer-Verlag
(September 2006)

30. Zanero, S.: Analyzing tcp traffic patterns using self organizing maps. Lecture Notes
in Computer Science 3617 (2005) 83

31. Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian Event Classification for
Intrusion Detection. In: Proceedings of the Annual Computer Security Applications
Conference (ACSAC 2003), Las Vegas, NV, USA (December 2003)

19

