
A Survey on Automated Dynamic Malware

Analysis Techniques and Tools

MANUEL EGELE

Vienna University of Technology

THEODOOR SCHOLTE

SAP Research, Sophia Antipolis

ENGIN KIRDA

Institute Eurecom, Sophia Antipolis

and

CHRISTOPHER KRUEGEL

University of California, Santa Barbara

Anti-virus vendors are confronted with a multitude of potential malicious samples today. Re-
ceiving thousands of new samples every single day is nothing uncommon. As the signatures that
should detect the confirmed malicious threats are still mainly created manually, it is important to
discriminate between samples that pose a new unknown threat, and those that are mere variants
of known malware.

This survey article provides an overview of techniques that are based on dynamic analysis
and that are used to analyze potentially malicious samples. It also covers analysis programs
that employ these techniques to assist a human analyst in assessing, in a timely and appropriate
manner, whether a given sample deserves closer manual inspection due to its unknown malicious
behavior.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information

Systems]: Security and Protection (D.4.6, K.4.2)

General Terms: Security

Additional Key Words and Phrases: Dynamic analysis, malware

1. INTRODUCTION

The Internet has become an essential part of the daily life of many people. More
and more people are making use of services that are offered on the Internet. The
Internet has evolved from a basic communication network to an interconnected
set of information sources enabling, among other things, new forms of (social)
interactions and market places for the sale of products and services. Online banking
or advertising are mere examples of the commercial aspects of the Internet. Just

Author’s address: M. Egele, Automation Systems Group (E183-1), Vienna University of Technol-
ogy, Treitlstr. 1, 1040 Vienna, Austria.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0360-0300/YY/00-0001 $5.00

ACM Computing Surveys, Vol. V, No. N, 20YY, Pages 1–49.

2 · M. Egele et al.

as in the physical world, there are people on the Internet with malevolent intents
that strive to enrich themselves by taking advantage of legitimate users whenever
money is involved. Malware (i.e., software of malicious intent) helps these people
accomplishing their goals.

To protect legitimate users from these threats, security vendors offer tools that
aim to identify malicious software components. Typically, these tools apply some
sort of signature matching to identify known threats. This technique requires the
vendor to provide a database of signatures. Then, these manually created signatures
are compared against potential threats. Once the security vendor obtains a sample
of a new potential threat to study, the first step for a human analyst is to determine
whether this (so far unknown) sample poses a threat to users by analyzing the
sample. If the sample poses a threat, the analyst attempts to find a pattern that
allows her to identify this sample (i.e., the signature). This pattern should be
generic enough to also match with variants of the same threat, but not falsely match
on legitimate content. The analysis of malware and the successive construction of
signatures by human analysts is time consuming and error prone. At the same
time, it is trivial for malware authors to automatically generate a multitude of
different malicious samples derived from a single malware instance. An anti-virus
vendor that receives thousands of unknown samples per day is not extraordinary
nowadays. Symantec [Fossi et al. 2009] (4,300 per day) as well as McAfee [Marcus
et al. 2009] (12,300 per day) report to have received over 1.6M new samples during
the year 2008. This substantial quantity requires an automated approach to quickly
differentiate between samples that deserve closer (manual) analysis, and those that
are a variation of already known threats. This automatic analysis can be performed
in two ways. Dynamic analysis refers to techniques that execute a sample and verify
the actions this sample performs in practice, while static analysis performs its task
without actually executing the sample.

This article focuses on the techniques that can be applied to analyze potential
threats, and discriminate samples that are mere variations of already known threats.
In addition, it presents the currently available tools and their underlying approaches
to perform automated dynamic analysis on potentially malicious software.

2. WHAT IS MALWARE?

Software that “deliberately fulfills the harmful intent of an attacker” is commonly
referred to as malicious software or malware [Moser et al. 2007a]. Terms, such
as “worm”, “virus”, or “Trojan horse” are used to classify malware samples that
exhibit similar malicious behavior. The first instances of malicious software were
viruses. The motivation for the creators of such early malware was usually to
highlight some security vulnerabilities or simply to show off technical ability. For
example, the cleaning of Bagle worm infected hosts by instances of the Netsky
worm could be considered as rivalry between different authors [Tanachaiwiwat and
Helmy 2006]. As time passed, the motivations changed. Today, there is a flourishing
underground economy based on malware [Zhuge et al. 2008]. It is no longer the
fun factor that drives the development in these circles, but the perspective of the
money that can be made.

Consider the following scenario which illustrates the distribution of malware and

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 3

its effects. A bot is a remotely-controlled piece of malware that has infected an
Internet-connected computer system. This bot allows an external entity, the so-
called bot master, to remotely control this system. The pool of machines that are
under control of the bot master is called a botnet. The bot master might rent this
botnet to a spammer who misuses the bots to send spam emails containing links to
a manipulated web page. This page, in turn, might surreptitiously install a spyware
component on a visitors system which collects personal information, such as credit
card numbers and online banking credentials. This information is sent back to the
attacker who is now able to misuse the stolen information by purchasing goods
online. All involved criminals make money at the expense of the infected user, or
her bank respectively. With the rise of the Internet and the number of attached
hosts, it is now possible for a sophisticated attacker to infect thousands of hosts
within hours after releasing the malware into the wild [Moore et al. 2002]. Recently,
a study by Stone-Gross et al. [2009] revealed that the Torpig botnet consists of more
than 180,000 infected computer systems.

The risk described above motivates the need to create tools that support the
detection and mitigation of malicious software. Nowadays, the weapon of choice
in combat against malicious software are signature-based anti-virus scanners that
match a pre-generated set of signatures against the files of a user. These signatures
are created in a way so that they only match malicious software. This approach
has at least two major drawbacks. First, the signatures are commonly created by
human analysts. This, often, is a tedious and error-prone task. Second, the us-
age of signatures inherently prevents the detection of unknown threats for which
no signatures exist. Thus, whenever a new threat is detected, it needs to be ana-
lyzed, and signatures need to be created for this threat. After the central signature
database has been updated, the new information needs to be deployed to all clients
that rely on that database. Because the signatures are created by human analysts,
unfortunately, there is room for error. Multiple AV vendors released signature up-
dates that mistakenly identified legitimate executables as being malware [FRISK
Software International 2003; John Leyden (The Register) 2007], thus, rendering the
operating system they were designed to protect, inoperative.

Closely related to the second drawback (i.e., not being able to detect unknown
threats), is the inability to detect specifically tailored malware. Besides the mass
phenomenon of Internet worms and malicious browser plug-ins, one can observe the
existence of specifically tailored malware that is created for targeted attacks [Avira
Press Center 2007]. Spyware programs might be sent via email to the executive
board of a company with the specific intent to capture sensitive information re-
garding the company. Because these malware samples usually do not occur in the
wild, it is unlikely that an anti-virus vendor receives a sample in time to analyze
it and produce signatures. This means that the spyware could be operational in
the company for a long time before it is detected and removed, even if anti-virus
software is in place.

The inability to detect unknown threats is an inherent problem of signature-
based detection techniques. This is overcome by techniques that base their decision
of identifying a piece of code as being malicious or not, on the observation of the
software’s behavior. Although these techniques allow for the detection of previously

ACM Computing Surveys, Vol. V, No. N, 20YY.

4 · M. Egele et al.

unknown threats to a certain extent, they commonly suffer from false positives.
That is, legitimate samples are falsely classified by the detection system as being
malicious due to the detector’s inability to distinguish legitimate from malicious
behavior under all circumstances.

2.1 Types of Malware

This section gives a brief overview of the different classes of malware programs that
have been observed in the wild. The following paragraphs are solely intended to
familiarize the reader with the terminology that we will be using in the remainder of
this work. Furthermore, these classes are not mutually exclusive. That is, specific
malware instances may exhibit the characteristics of multiple classes at the same
time. A more detailed discussion of malicious code in general can be found for
example in Skoudis and Zeltser [2003], or Szor [2005].

Worm. Prevalent in networked environments, such as the Internet, Spafford
[1989] defines a worm as “a program that can run independently and can propa-
gate a fully working version of itself to other machines.” This reproduction is the
characteristic behavior of a worm. The Morris Worm [Spafford 1989] is the first
publicly known instance of a program that exposes worm-like behavior on the Inter-
net. More recently, in July 2001, the Code Red worm infected thousands (359,000)
of hosts on the Internet during the first day after its release [Moore et al. 2002].
Today, the Storm worm and others are used to create botnets that are rented out
by the bot masters to send spam emails or perform distributed denial of service
attacks (DDOS) [Kanich et al. 2008], where multiple worm infected computers try
to exhaust the system resources or the available network bandwith of a target in a
coordinated manner.

Virus. “A virus is a piece of code that adds itself to other programs, including
operating systems. It cannot run independently - it requires that its “host” program
be run to activate it.” [Spafford 1989] As with worms, viruses usually propagate
themselves by infecting every vulnerable host they can find. By infecting not only
local files but also files on a shared file server, viruses can spread to other computers
as well.

Trojan Horse. Software that pretends to be useful, but performs malicious ac-
tions in the background, is called a Trojan horse. While a Trojan horse can disguise
itself as any legitimate program, frequently, they pretend to be useful screen-savers,
browser plug-ins, or downloadable games. Once installed, their malicious part might
download additional malware, modify system settings, or infect other files on the
system.

Spyware. Software that retrieves sensitive information from a victim’s system
and transfers this information to the attacker is denoted as spyware. Information
that might be interesting for the attacker include accounts for computer systems or
bank account credentials, a history of visited web pages, and contents of documents
and emails.

Bot. A bot is a piece of malware that allows its author (i.e., the bot master) to
remotely control the infected system. The set of bots collectively controlled by one
bot master is denoted a botnet. Bots are commonly instructed to send spam emails
or perform spyware activities as described above.

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 5

Rootkit. The main characteristic of a rootkit is its ability to hide certain infor-
mation (i.e., its presence) from a user of a computer system. Rootkit techniques
can be applied at different system levels, for example, by instrumenting API calls
in user-mode or tampering with operating system structures if implemented as a
kernel module or device driver. Manipulating the respective information allows
a rootkit to hide processes, files, or network connections on an infected system.
Moreover, virtual machine based rootkits [King et al. 2006; Rutkowska 2006; Zovi
2006] conceal their presence by migrating an infected operating system into a vir-
tual machine. The hiding techniques of rootkits are not bad per se, but the fact
that many malware samples apply rootkit techniques to hide their presence in the
system, justifies mentioning them here.

2.2 Infection Vectors

This section gives an overview of the infection vectors that are commonly used by
malicious software to infect a victim’s system. Brief examples are used to illustrate
how these infections work and how malware used them in the past.

2.2.1 Exploiting Vulnerable Services over the Network. Network services run-
ning on a server provide shared resources and services to clients in a network. For
example, a DNS service provides the capabilities of resolving host names to IP ad-
dresses, a file server provides shared storage on the network. Many commodity off
the shelf operating systems come with a variety of network services that are already
installed and running. Vulnerabilities in such services might allow an attacker to
execute her code on the machine that is providing the service. Large installation
bases of services that share the same vulnerability (e.g., [Microsoft Corporation
2008]) pave the way for automatic exploitation. Thus, such conditions allow mali-
cious software to infect accessible systems automatically. This characteristic makes
network service exploitation the preferred method for infection by worms. More-
over, services that provide system access to remote users, and authenticate these
users with passwords (e.g., ssh, administrative web interfaces, etc.), are frequently
exposed to so-called dictionary attacks. Such an attack iteratively tries to log into
a system using passwords stored in a dictionary.

2.2.2 Drive-by downloads. Drive-by downloads usually target a victim’s web
browser. By exploiting a vulnerability in the web browser application, a drive-by
download is able to fetch malicious code from the web and subsequently execute
it on the victim’s machine. This usually happens without further interaction with
the user. In contrast to exploiting vulnerabilities in network services in which
push-based infection schemes are dominant, drive-by downloads follow a pull-based
scheme [Provos et al. 2008]. That is, the connections are initiated by the client as
it is actively requesting the malicious contents. Therefore, firewalls that protect
network services from unauthorized access cannot mitigate the threat of drive-by
attacks. Currently, two different techniques are observed in the wild that might
lead to a drive-by infection:

—API misuse: If a certain API allows for downloading an arbitrary file from the
Internet, and another API provides the functionality of executing a random file
on the local machine, the combination of these two APIs can lead to a drive-by

ACM Computing Surveys, Vol. V, No. N, 20YY.

6 · M. Egele et al.

infection [Microsoft Corporation 2006]. The widespread usage of browser plug-ins
usually gives attackers a huge portfolio of APIs that they might use and combine
for their nefarious purposes in unintended ways.

—Exploiting web browser vulnerabilities: This attack vector is identical to the case
of exploitable network services. Moreover, as described in [Sotirov] and Daniel
et al. [2008] the availability of client-side scripting languages, such as Javascript
or VBScript, provide the attacker with additional means to successfully launch
an attack.

Before a drive-by download can take place, a user is first required to visit the
malicious site. In order to lure the user into visiting the malicious site, attackers
perform social engineering and send spam emails that contain links to these sites
or infect existing web pages with the malicious code. For example, the infamous
Storm worm makes use of its own botnet resources to send spam emails containing
links to such attack pages [Kanich et al. 2008].

To maximize the number of sites that host such drive-by attacks, attackers exploit
vulnerabilities in web applications that allow them to manipulate these web sites
(e.g., [Dan Goodin (The Register) 2008]). This is an example in which attackers
use the infection vector of vulnerable network services to launch drive-by download
attacks on clients of that service (e.g., a web site). Another technique for attackers
to lure users to their web sites is by trying to cheat the ranking algorithms web
search engines use, to sort result pages. An attacker may create a page that is
specifically instrumented to rank high for common search query terms. If the page
is listed on a top position for these query terms, it will result in a large number
of visitors [Cacheda and Viña 2001; Jansen and Spink 2005]. Provos et al. [2008]
discovered that more than 1.3% of results to Google search queries include at least
one page that tries to install malicious software on a visitor’s machine. Provos et al.
[2007] also analyzed the techniques malware authors apply to lure a user to open a
connection to a host that performs drive-by download attacks. The most prevalent
forms of such actions are circumventing web-server security measures, providing
user generated content, advertising schemes, and malicious widgets.

2.2.3 Social Engineering. All techniques that lure a user into deliberately exe-
cuting malicious code on her machine, possibly under false pretences, are subsumed
as social engineering attacks. There are virtually no limits to the creativity of at-
tackers when social engineering is involved. Asking the user to install a provided
“codec” to view the movie that is hosted on the current web site, clicking and
opening an image that is attached to a spam email, or speculating that the user
plugs a “found” USB key into her computer eventually [Stasiukonis 2007] are just
a few examples of social engineering.

2.3 Malware Analysis

Today, signatures for anti-virus toolkits are created manually. Prior to writing a
signature, an analyst must know if an unknown sample poses a threat to the users.
Different malware analysis techniques allow the analyst to quickly and in detail un-
derstand the risk and intention of a given sample. This insight allows the analyst
to react to new trends in malware development or refine existing detection tech-
niques to mitigate the threat coming from that sample. The desire of analysts to

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 7

understand the behavior of a given sample, and the opposing intention of malware
authors, to disguise their creation’s malicious intents, leads to an arms race between
those two parties. As analysis tools and techniques become more elaborate, attack-
ers come up with evasion techniques to prevent their malware from being analyzed.
Such techniques cover self modifying or dynamically generated code, as well as ap-
proaches that detect the presence of an instrumented analysis environment, thus,
allowing the malware to conceal or inhibit its malicious behavior. Before we elab-
orate on possible evasion mechanisms, the following sections present an overview
of applicable program analysis techniques that are used today to analyze malicious
code.

The process of analyzing a given program during execution is called dynamic
analysis, while static analysis refers to all techniques that analyze a program by
inspecting it. Dynamic analysis is covered in detail in Section 3. For completeness,
a brief introduction and known limitations of static analysis approaches follows.

2.3.1 Static Analysis. Analyzing software without executing it, is called static
analysis. Static analysis techniques can be applied on different representations of
a program. If the source code is available, static analysis tools can help finding
memory corruption flaws [Chen et al. 2004; Chen and Wagner 2002; Feng et al.
2004] and prove the correctness of models for a given system.

Static analysis tools can also be used on the binary representation of a program.
When compiling the source code of a program into a binary executable, some in-
formation (e.g., the size of data structures or variables) gets lost. This loss of
information further complicates the task of analyzing the code.

Static analysis tools can be used to extract useful information of a program. Call
graphs give an analyst an overview of what functions might be invoked from where
in the code. If static analysis is able to calculate the possible values of parame-
ters [Egele et al. 2006], then this knowledge can be used for advanced protection
mechanisms.

Problems of Static Malware Analysis Approaches: Generally, the source code of
malware samples is not readily available. That reduces the applicable static anal-
ysis techniques for malware analysis to those that retrieve the information from
the binary representation of the malware. Analyzing binaries brings along intri-
cate challenges. Consider, for example, that most malware attacks hosts executing
instructions in the IA32 instruction set. The disassembly of such programs might
result in ambiguous results if the binary employs self modifying code techniques
(e.g., packer programs as discussed in Section 4.6.1). Additionally, malware relying
on values that cannot be statically determined (e.g., current system date, indirect
jump instructions) exacerbate the application of static analysis techniques. More-
over, Moser et al. [2007b] proposes an approach that relies on opaque constants
to thwart static analysis. It can be expected that malware authors know of the
limitations of static analysis methods and thus, will likely create malware instances
that employ these techniques to thwart static analysis. Therefore, it is necessary
to develop analysis techniques that are resilient to such modifications, and are able
to reliably analyze malicious software.

ACM Computing Surveys, Vol. V, No. N, 20YY.

8 · M. Egele et al.

3. DYNAMIC MALWARE ANALYSIS TECHNIQUES

Analyzing the actions performed by a program while it is being executed is called
dynamic analysis. This section deals with the different approaches and techniques
that can be applied to perform such dynamic analysis.

3.1 Function Call Monitoring

Typically, a function consists of code that performs a specific task, such as, calcu-
lating the factorial value of a number or creating a file. While the use of functions
can result in easy code re-usability, and easier maintenance, the property that
makes functions interesting for program analysis is that they are commonly used to
abstract from implementation details to a semantically richer representation. For
example, the particular algorithm which a sort function implements, might not be
important as long as the result corresponds to the sorted input. When it comes to
analyzing code, such abstractions help gaining an overview of the behavior of the
program. One possibility to monitor what functions are called by a program is to
intercept these calls. The process of intercepting function calls is called hooking.
The analyzed program is manipulated in a way that in addition to the intended
function, a so-called hook function is invoked. This hook function is responsible for
implementing the required analysis functionality, such as recording its invocation
to a log file, or analyze input parameters.

Application Programming Interface (API). Functions that form a coherent set of
functionality, such as manipulating files or communicating over the network, are
often grouped into a so-called application programming interface (API). Operating
systems usually provide many APIs that can be used by applications to perform
common tasks. These APIs are available on different layers of abstraction. Network
access, for example, can be provided by an API that focuses on the content trans-
mitted in TCP packets, or by a lower level API that allows the application to create
and write packets directly to a raw socket. On Windows operating systems, the
term Windows API refers to a set of APIs that provide access to different functional
categories, such as networking, security, system services, and management.

System Calls. Software executing on computer systems, that run commodity off
the shelf operating systems, is usually divided in two major parts. While general
applications, such as word processors, or image manipulation programs are executed
in so-called user-mode, the operating system is executed in kernel-mode. Only
code that is executed in kernel-mode has direct access to the system state. This
separation prevents user-mode processes from interacting with the system and their
environment directly. It is, for example, not possible for a user-space process to
directly open or create a file. Instead, the operating system provides a special well
defined API – the system call interface. Using system calls, a user-mode application
can request the operating system to perform a limited set of tasks on its behalf.
Thus, to create a file, a user-mode application needs to invoke the specific system
call indicating the file’s path, name, and access method. Once the system call is
invoked, the system is switched into kernel-mode (i.e., privileged operating system
code is executed). Upon verification that the calling application has sufficient access
rights for the desired action, the operating system carries out the task on behalf
of the user-mode applications. In the case of the file-creation example, the result

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 9

of the system call is a so-called file handle, where all further interaction of the
user-mode application regarding this file (e.g., write to the file) is then performed
through this handle. Apart from exhaustively using resources (bound by the limits
of the operating system), there is usually little a malware sample can do within the
bounds of its process. Therefore, malware (just as every other application) that
executes in user-space and needs to communicate with its environment has to invoke
the respective system calls. Since system calls are the only possibility for a user-
mode process to access or interact with its environment, this interface is especially
interesting for dynamic malware analysis. However, malware samples are known
that manage to gain kernel-mode privileges. Such instances do not necessarily make
use of the system call interface and might evade this analysis method.

Windows Native API. The Windows Native API [Nebbett 2000] resides between
the system call interface and the Windows API. While the Windows API remains
stable for any given version of the Windows operating system, the Native API is not
restricted in that way and may change with different service pack levels of the same
Windows version. The Native API is commonly invoked from higher level APIs,
such as the Windows API, to invoke the system calls and perform any necessary
pre- or post processing of arguments or results. Legitimate applications commonly
communicate with the OS through the Windows API, but malicious code might skip
this layer and interact with the Native API directly to thwart monitoring solutions
that hook the Windows API only. This comes of course with the additional burden
for the malware author to design the malware in a way that it covers all different
versions of the Native API. As there is no official and complete documentation of
the Native API, this requires great knowledge of Windows internals. Similarly, a
malware author might decide to skip the Native API and invoke the system calls
directly from the malware. While this is possible, it requires even deeper knowledge
of an even less documented interface.

Results of Function Hooking. Hooking API functions allows an analysis tool to
monitor the behavior of a program on the abstraction level of the respective func-
tion. While semantically rich observations can be made by hooking Windows API
functions, a more detailed view of the same behavior can be obtained by monitor-
ing the Native API. The fact that user space applications need to invoke system
calls to interact with their environment implies that this interface deserves special
attention. However, this restriction only holds true for malware running in user
mode. Malware executing in kernel mode can directly invoke the desired functions
without passing through the system call interface.

3.1.1 Implementing Function Hooking. Depending on the availability of the pro-
grams’ source code, different approaches to hook functions can be applied. If
the source code is available, invocations to hook functions can be inserted into
the source code at the appropriate places. Alternatively, compiler flags (e.g.,
-finstrument-functions in GCC [Free Software Foundation]) can be used to im-
plement hooking.

Binary rewriting is used if the program under analysis is only available in binary
form. To this end, two approaches can perform the necessary analysis. (1) Rewrit-
ing the monitored function in a way that, prior to executing its original code, the
function invokes the hook. (2) Finding and modifying all call sites (i.e., the call

ACM Computing Surveys, Vol. V, No. N, 20YY.

10 · M. Egele et al.

instructions) that upon execution invoke the monitored function to call the hook
instead.
In both approaches, the hook function obtains full access to the original arguments
on the stack and can perform the desired analysis steps. In addition, if the func-
tion is invoked through a function pointer (e.g., functions in shared libraries), this
value can be changed to point to the hook function instead. On Windows operating
systems the Detours library is readily available to facilitate function call hooking.

The idea behind Detours [Hunt and Brubacher 1999] is to apply target function
rewriting to implement function call hooking. This is accomplished by redirecting
control flow from the function to hook to the analysis function, which in turn might
call the original function. The diversion of the control flow is implemented by over-
writing the initial instructions of the original function with an unconditional jump
to the analysis code. The overwritten instructions are backed up and copied to a
so-called trampoline function. This trampoline consists of the backed up instruc-
tions, and an unconditional jump into the original function after the overwritten
instructions. Once the monitored application calls the hooked function, the new
instructions divert the control flow to the analysis code. This code can perform
any preprocessing (e.g., sanitizing of arguments) and has full control over the con-
trol flow. The analysis code can then instantly return to the caller or invoke the
original function by calling the trampoline. Since the original function is called by
the analysis code, this code is in control after the function returns and can then
perform any post processing necessary.

Detours offers two alternative approaches to apply the necessary modifications
to a program. (1) It modifies binary files before they are loaded and executed or
(2) it manipulates the in memory image of an already loaded binary. The first
technique requires that additional sections are added to the binary file while it is
on disk. This requires modification of the disk structure of the file to make space for
the additional code. Modifying an already running binary is accomplished through
DLL injection. First, all payload data (i.e., analysis functions) is compiled into a
DLL. Then, a new thread is created in the running binary that loads this DLL.
Upon initialization of the DLL, Detours manipulates the binary as described above
(e.g., create trampolines, overwrite initial instructions of the target function).

Debugging techniques can also be used to hook into invocations of certain func-
tions. Breakpoints can be inserted at either the call site or the function to monitor.
When a breakpoint triggers, control is given to the debugger that has full access
to the memory contents and CPU state of the debugged process. Thus, an instru-
mented debugger can be used to perform the intended analysis.

If available, the hooking infrastructure provided by the operating system can
be used to monitor system actions. The Windows operating system, for example,
provides mechanisms to specify messages and corresponding hook functions. When-
ever an application receives the specified message (e.g., a key stroke occurred on
the keyboard, or a mouse button has been pressed), the hook function is executed.

Replacing dynamic shared libraries can serve as another means to perform func-
tion call monitoring. For analysis purposes, the original libraries might be renamed
and replaced by stub libraries containing the hook functions. These stubs can either
simulate the original behavior or call the original function in the renamed library.

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 11

This method is able to fully capture the interactions of a program with a given
API.

3.1.2 Post-processing Function Call Traces. Monitoring function calls results in
a so called function call trace. This trace consists of the sequence of functions that
were invoked by the program under analysis, along with the passed arguments. Dif-
ferent approaches exist that take these function call traces as input and abstract to
semantically richer representations of the malware behavior. Christodorescu et al.
[2007] convert function call traces to a graph representation. This representation
allows them to compare the behavior of malicious software against behavior ex-
hibited by legitimate software. The difference between these graphs represents the
malicious core of the malware. Such techniques enable the analyst to detect mali-
cious instances of the same malware family even for previously unknown samples.
Xu et al. [2004] compare function call traces of known malicious binaries to those of
unknown samples in order to detect polymorphic variants of the same threat. They
apply sequence alignment techniques to calculate similarities between function call
traces.

3.2 Function Parameter Analysis

While function parameter analysis in static analysis tries to infer the set of possible
parameter values or their types in a static manner, dynamic function parameter
analysis focuses on the actual values that are passed when a function is invoked.
The tracking of parameters and function return values enables the correlation of
individual function calls that operate on the same object. For example, if the
return value (a file-handle) of a CreateFile system call is used in a subsequent
WriteFile call, such a correlation is obviously given. Grouping function calls into
logically coherent sets provides detailed insight into the program’s behavior from a
different, object centric, point of view.

3.3 Information Flow Tracking

An orthogonal approach to the monitoring of function calls during the execution
of a program, is the analysis on how the program processes data. The goal of
information flow tracking is to shed light on the propagation of “interesting” data
throughout the system while a program manipulating this data is executed. In
general, the data that should be monitored is specifically marked (tainted) with a
corresponding label. Whenever the data is processed by the application, its taint-
label is propagated. Assignment statements, for example, usually propagate the
taint-label of the source operand to the target. Besides the obvious cases, policies
have to be implemented that describe how taint-labels are propagated in more
difficult scenarios. Such scenarios include the usage of a tainted pointer as the base
address when indexing to an array or conditional expressions that are evaluated on
tainted values.

Taint sources and sinks. Two vital concepts in information flow tracking systems
are taint sources and taint sinks. A taint source is responsible for introducing new
taint labels into the system (i.e., tainting the data that is deemed interesting by
the analysis). In contrast to a taint source, a taint sink is a component of the
system that reacts in a specific way when stimulated with tainted input (e.g., emit

ACM Computing Surveys, Vol. V, No. N, 20YY.

12 · M. Egele et al.

//tainted x

a = x; mov eax, x

a = a + x; add eax, x

Fig. 1. Direct data dependencies examples

//tainted pointer x e.g., jump table
a = x[10]; mov eax, [x + 10]

//tainted value y e.g., translation table
b = c[y]; mov eax, [c+y]

Fig. 2. Address dependencies examples

a warning when tainted data is transferred over the network).
The following examples should give a brief overview of the aspects that need

to be taken into account when developing information flow tracking systems. The
code snippets use the C syntax, and a corresponding Intel asm notation, where
appropriate.

irect data dependencies. Taint labels are simply propagated for direct assign-
ments or arithmetic operations that are dependent on a tainted value.

Policies need to define what happens if two taint labels are involved in the same
operation. Recall the above arithmetic operation (a = a + x). This time, we
assume that both operands are tainted with distinct taint labels. The propagation
policy has to define what should happen in such a case. Possible scenarios include
choosing one label over the other, or creating a new label representing a combination
of the two original labels.

Address dependencies. A system that implements address tainting also propa-
gates taint labels for memory read or write operations whose target addresses are
derived from tainted operands. Translating a value from one alphabet to another,
for example, can be effectively accomplished by the use of translation tables. Such
a table is used in Windows environments to translate ASCII characters to their
Unicode counterparts. When tracking address dependencies, the target of an oper-
ation gets tainted if a tainted value is used as a pointer to the base of an array, or
as an index into an array.

Control flow dependencies. Direct data dependencies and addressing dependen-
cies have in common that the decision whether the taint label is propagated to the
target of an instruction can be reached in the scope of a single asm instruction.
Correctly tracking information that is propagated based on control flow decisions,
is intricate. The following snippet copies the value of x to v.

A system equipped with direct data and address dependency tracking would miss
such an information flow since no assignment (direct or indirect) is done via the
tainted variable x. To cover these cases as well, a possible (conservative) solution
is to execute the following two step algorithm: Whenever a tainted value is in-
volved in a control flow decision, (1) calculate the reconvergence point (i.e., the
first instruction that is executed regardless of which branch is executed) of the
branch instruction. (2) until the reconvergence point is reached, every target of an

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 13

//tainted x

if (x == 0) {

v = 0;

} if (x == 1) {

v = 1;

} ...

Fig. 3. Control flow dependencies example

//tainted x

a = 0; b = 0;

if (x == 1) then a = 1 else b = 1;

if (a == 0) then v = 0;

if (b == 0) then v = 1;

Fig. 4. Implicit information flow example

assignment is tainted regardless of the taint label of the source operands. This is
implemented, for example, in Egele et al. [2007] and Nair et al. [2008].

Implicit information flow. The following example exploits the semantic relation-
ship between the variables a,b and x in a way to copy the value of x to v and
thereby evading the taint tracking mechanisms so far described.

The code in Figure 4 reflects the implicit information that after the execution
of the if statement (line 2) exactly one of the variables a and b is set to 1. For
example, if x holds the value 1 line 2 would set a to 1. Subsequently, the if

statement in line 3 will not execute the then branch (since a 6= 0). Finally, v is
assigned the value 1 in line 4. The program behaves similar when x equals to zero.
Although this sample only leaks one bit of information, a malicious software can
execute this code repeatedly to hide arbitrary amounts of data from information
flow tracking systems that track data, address, and control flow dependencies.

In order to successfully track the information flow in cases as the above example,
the values of a and b need to be tainted in line 2. This would require that a similar
approach as for control flow dependencies is followed, where additionally assign-
ments in not executed branches need to be tainted. Identifying these assignments
can be either accomplished by analyzing the snippet statically (e.g., [Backes et al.
2009; Nair et al. 2008]), or dynamically by forcing execution down all available
branches (e.g., [Moser et al. 2007a]).

Implementation of information flow tracking systems. Depending on the appli-
cation that should be analyzed, information flow tracking can be implemented on
different levels.

For interpreted languages (e.g., JavaScript, Perl, etc.) the instrumentation code
can be added to the interpreter or just in time (JIT) compiler (e.g., [Haldar et al.
2005; Vogt et al. 2007]). In this way, all the bookkeeping information that the
JIT needs for execution (e.g., type of variables, size of structures) is accessible to
the tracking environment as well. In fact, Perl has built in support for a taint
mode [Perl Taint] which is enabled as soon as the real and effective group or user-
ids differ. This allows the interpreter to prevent a variety of common security flaws
from being exploited.

ACM Computing Surveys, Vol. V, No. N, 20YY.

14 · M. Egele et al.

To track the information flow on a binary level, the instrumentation is usually
done in an environment where there is full control over the process under analysis.
Such an environment can be based on dynamic binary instrumentation [Newsome
and Song 2005], a full system emulator (e.g., [Chow et al. 2004; Egele et al. 2007;
Portokalidis et al. 2006; Yin et al. 2007]), or even a hardware implementation [Cran-
dall and Chong 2004] or [Venkataramani et al. 2008].

The value and applicability of information flow tracking for malware analysis is
discussed by Cavallaro et al. [2008]. Researchers so far have demonstrated systems
that perform data-, address-, and control flow tracking [Kim et al. 2009; Nanda
et al. 2007]. Trishul as presented in Nair et al. [2008] even addresses the implicit
information flows. However, these systems do not intend to be used for malware
analysis. If information flow techniques become prevalent in analysis tools, it can
be expected that malware authors will come up with mechanisms that try to cir-
cumvent such systems.

The feasibility of systems that perform address or pointer tainting is evaluated
in Slowinska and Bos [2009]. The critiques raised therein apply to systems where
taint labels are propagated unrestricted on the physical level of an emulated system
without leveraging higher level information, such as process or library boundaries.
However, some of the tools presented in Section 5 suggest, address tainting is viable
in an environment that use this kind of information to limit taint propagation to
those parts of the system that are deemed relevant for the analysis.

3.4 Instruction Trace

A valuable source of information for an analyst to understand the behavior of
an analyzed sample is the instruction trace. That is, the sequence of machine
instructions that the sample executed while it was analyzed. While commonly
cumbersome to read and interpret, this trace might contain important information
that is not represented in a higher level abstraction (e.g., analysis report of system
and function calls).

3.5 Autostart extensibility points

Autostart extensibility points (ASEPs [Wang et al. 2004]) define mechanisms in the
system that allow programs to be automatically invoked upon the operating system
boot process or when an application is launched. Most malware components try
to persist during reboots of an infected host by adding themselves to one of the
available ASEPs. It is, therefore, of interest to an analyst to monitor such ASEPs
when an unknown sample is analyzed.

4. IMPLEMENTATION STRATEGIES

The implementation of a malware analysis system requires different design decisions
that have far-reaching consequences. The different CPU privilege levels, as intro-
duced in Section 3.1, imply that an analysis component that executes in a higher
privilege level than the program under analysis, cannot be accessed by this pro-
gram. Analysis components executing on the same privilege level as the malware
need to apply stealth techniques to remain hidden from the analyzed program. Im-
plementing the analysis functionality in an emulator or virtual machine potentially
allows an analysis approach to hide its presence even from malware that executes

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 15

in kernel space. Of course, malware executing in a higher privilege level than the
analysis component can always hide itself and thus thwart being analyzed. This
section describes the different possibilities of how to implement an analysis system,
and explains the benefits and drawbacks of each method.

4.1 Analysis in User- / Kernel-space

Analyzing malicious software in user-space enables an analysis approach to gather
information such as invoked functions or API calls. Such an approach can easily
access all memory structures and high level information provided by the operating
system. For example, enumerating the running processes is as trivial as querying
the loaded modules or libraries. This is possible because the same set of APIs is
available to the analysis tool as to every other application running on the system.
The possibilities to hide the analysis component when only executing in user space
are very limited. For example, hiding a process or a loaded library from all other
processes running on the system is usually not possible from user space alone.

The just mentioned limitation is eased when the analysis component runs in ker-
nel space. Analysis tools with access to kernel level functions can gather additional
information, such as invoked system calls. Also hiding its presence from malware
that only executes in user mode is possible. Hiding from malicious software that
gained the privilege to run in kernel mode is again complicated.

Granted that the analysis component executes in kernel-mode, API hooking is
trivially achieved. However, it is somewhat more complicated to record an in-
struction trace or perform information flow tracing. One possibility to record an
instruction trace is to leverage the debugging facilities of the CPU to single step
through the sample under analysis. Setting the trap flag in the x86 EFLAGS reg-
ister accomplishes this task. Setting this flag results in a debug exception being
thrown for the next instruction. The analysis component can catch this debug ex-
ception and perform the necessary steps, such as disassembling the instruction and
appending it to the instruction trace.

4.2 Analysis in an Emulator

Executing a program in an emulated environment allows an analysis component
to control every aspect of program execution. Depending on which part of the
execution environment is emulated, different forms of analysis are possible.

Memory & CPU Emulation. Emulating the CPU and memory results in a sand-
box that allows one to run potential malicious code without having to fear negative
impacts on the real system. A binary is executed in this sandbox by successively
reading its instructions and performing equivalent operations in the virtual emu-
lated environment. All side effects the binary produces are contained in the sand-
box. To successfully emulate samples that rely on operating system services or
shared libraries, these mechanisms need to be emulated as well. While projects
exist that implement such emulation approaches (e.g., libemu [Baecher and Koet-
ter]), the most prominent use of this technique is in engines of modern anti-virus
products. Many AV suites employ CPU and memory emulation to overcome the
hurdles imposed by packed or obfuscated binaries. To analyze a possibly packed
binary, it is executed in the emulated environment. If the AV engine detects an un-

ACM Computing Surveys, Vol. V, No. N, 20YY.

16 · M. Egele et al.

packing sequence, the signatures are matched on the unencrypted memory contents
contained in the emulated memory.

For a malicious sample to detect that it is running in such an emulated environ-
ment, it is enough to perform an operation that requires components that are not
or insufficiently emulated by the system. For example, the emulator might behave
different from a real CPU in the case of a CPU bug (if this bug is not considered
in the emulation).

Full System Emulation. A full system emulator (e.g., [Bellard; Bochs] etc.) pro-
vides the functionality of a real computer system, including all required peripherals.
In addition to CPU and memory, emulated devices, such as network interface cards,
and mass storage are available. This setup makes it possible to install a common
off-the-shelf operating system in the emulator. The OS that runs in the emulator is
referred to as the guest, while the computer executing the emulator itself is called
the host. An emulator allows the host and guest architectures to be different. Thus,
with the help of an emulator it is possible, for example, to analyze software that
is compiled for the ARM instruction set on a commodity x86 desktop computer.
Implementing the analysis component as part of the emulator allows the analysis
to be performed in a stealthy manner, and provides the possibility to monitor the
guest OS and all applications executed within. Since the emulator, and thus the
analysis component as well, has full control of what the guest operating system
perceives as its environment, it is possible for the analysis component to stay un-
detected. However, a malware sample can still detect side effects of the emulation,
or characteristics of the analysis environment, and cease to work in such cases. For
example, detecting imperfect emulation of CPU features allows a malware sample
to recognize that it is run in an emulator. Comparing system properties, such as
the currently logged in user, to known values might allow a malware instance to
detect a specific analysis tool. For a more detailed analysis of such “anti-analysis”
techniques see Section 4.6.2. Performing the analysis takes time and is noticeable
as delay or slowdown in the guest operating system, opening another avenue of
detection possibilities to malicious samples.

The benefit of having full control over the environment which is introduced by
using an emulator, comes with the drawback of the so-called semantic gap. An
analysis approach implemented in an emulator has full access to the emulated sys-
tem on the physical level. Nevertheless, the desired information consists of higher
level abstract concepts of the guest operating system (e.g., system calls, file han-
dles, etc.). Thus, to have access to this information, the analysis tool has to infer
the high level information from the raw system information by interpreting CPU
state and memory contents similar to the guest OS. A common requirement for
analysis systems that operate via full system emulation is that the analysis can be
confined to a single process (i.e., the sample under analysis) and therefore omitting
the other components of the system from being analyzed. Here, the semantic gap
manifests itself by the observation that on a hardware level there is no concept
of a process. However, on x86 architectures the page table base (CR3) register is
unique for each process. Thus, by monitoring the APIs that create new processes,
an analysis system can correlate the analyzed sample with a given CR3 register
value. Monitoring APIs in such a system can be accomplished by comparing the

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 17

value of the instruction pointer to the known function entry points in the dynamic
libraries that provide the APIs. Care has to be taken that the loader of the guest
operating system might decide to map a library at a different (than the preferred)
base address. Thus, this list has to be dynamically maintained.

Knowing the CR3 register value that corresponds to the process under analysis, it
is trivial to produce an instruction trace for this process. In brief, every instruction
that is executed while the CR3 register holds this value, is part of the analyzed
program. To lower the impact of the semantic gap, hybrid approaches exist that
perform the analysis in the emulator and gather higher level information (e.g., the
list of loaded modules, etc.) with the help of an additional component running in
the guest system [Bayer et al. 2006].

4.3 Analysis in a Virtual Machine

According to Goldberg [1974], a virtual machine (VM) is “an efficient, isolated
duplicate of the real machine”. A virtual machine monitor (VMM) is responsible
for presenting and managing this duplicate to programs, and is in charge of the
underlying hardware. This means, in practice, that no virtual machine can access
the hardware before the VMM assigns the hardware to this specific VM.

The key idea behind virtualization is that the privileged state of the physical ma-
chine is not directly accessible in any VM. The notion of privileged state observable
from within the VM exists only virtually and is managed by the VMM to match the
guest system’s expectations. In contrast to emulators, in virtual machines the host
and guest architecture are identical. This restriction allows the guest system to ex-
ecute non privileged instructions (i.e., instructions that do not affect the privileged
state of the physical machine) unmodified on the host hardware, thus, resulting in
improved performance. Similarly to emulators, however, virtual machines provide
strong isolation for resources. Thus, an analysis component implemented in a VMM
also has the potential to go unnoticed by the analyzed programs. Commonly, such
an analysis component is either integrated directly into the VMM or takes place
in an additional virtual machine. In the latter case, the VMM has to provide all
necessary information to the analysis VM to perform its task, resulting in lower
performance. Just as an emulator, the VMM only has access to the state of the
virtual machine. The semantic gap between this state and the high level concepts
of operating system objects has to be bridged to retrieve the relevant information.

While it is trivial to create an instruction trace in emulator, producing the same
result on a VM based analysis system is not so straight forward. This is because un-
privileged instructions are executed on bare hardware without involving the VMM.
To produce an instruction trace, nonetheless, the same approach as with kernel-
space analysis can be applied. Once the VMM learned the CR3 value of the process
to analyze, it sets the trap flag in the CPUs EFLAGS register. The only difference
is with environments that perform the analysis in the VMM; the debug exception
would be caught in the VMM before it even reaches the guest operating system.
For monitoring API calls, the same restrictions as for emulation based analysis
techniques apply.

ACM Computing Surveys, Vol. V, No. N, 20YY.

18 · M. Egele et al.

4.4 Resetting of the Analysis Environment

Another matter that might influence the design of an analysis approach is the
amount of time it takes to reset the analysis environment to a clean state. This
is necessary because results are only comparable if each sample is executed in an
identical environment. The more samples that need to be analyzed, the bigger
is the impact of this reset time. So far, three methods have been proposed to
perform this task. (1) software solutions, (2) virtual machine snapshots, (3) or
hardware snapshots. The general idea behind the latter two techniques is to keep a
“base system” (e.g., a plain installation of an operating system), and redirect any
modifications to that system transparently to separate storage. Read operations, in
turn, use that storage as an overlay to the original base system to correctly reflect
the performed changes. A reset happens by omitting or creating a new empty
overlay.

Software solution. The straight forward software approach consists of taking an
image of the hard drive that contains the base image with the analysis environment.
After each analysis run this image is restored from a tamper proof clean operating
system, such as a Linux live CD.

Virtual machine snapshots. Most VMMs (and full system emulators) [VMWare
snapshots ; Liguori 2010] provide mechanisms to take a snapshot of the state of
virtual machine (i.e., virtual mass storage, CPU, and memory contents). Such
systems rely on regular files as storage for the overlay data. VMMs and full system
emulators commonly support to take and load a snapshot of a running system. This
mechanism can be used to reduce the time required to analyze a sample since no
reboot is necessary to recreate a clean instance of the analysis environment.

Hardware support for snapshots. Similar to snapshots in VMMs, hardware solu-
tions exist that redirect all changes directed to a base image to another physical
drive or designated working area [Juzt-Reboot Technology]. Resetting this system
again is accomplished by omitting the overlay for read accesses. However, since
sudden changes to the underlying file-system are unexpected to the guest operating
system, such techniques require that a system is rebooted between analysis runs.

4.5 Network Simulation

Modern malware samples frequently require some form of Internet access for their
operation. For example, a malware sample might download additional components,
updates, or configuration data before performing its nefarious actions. The trivial
approach of denying or allowing all network traffic usually yields undesired results.
Denying all network access to the sample under analysis will most likely result in
incomplete observations of the malware’s behavior. For example, a spam sending
worm that cannot resolve the IP address of the mail-server cannot even try to
send spam emails. Thus, this characteristic behavior cannot be monitored. If
all network access is allowed, however, the same sample might participate in real
spam campaigns which resembles unacceptable behavior. In addition to providing
Internet access to a malware sample, it is also advantageous to provide easy targets
for infection in case the malware attempts to spread over the network [Inoue et al.
2008]. Such targets are commonly provided by honeypots that imitate vulnerable
network services. In this section, we discuss methods to restrict network access

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 19

for samples under analysis. These restrictions can be performed with different
techniques and to varying extents.

No Internet, but simulated network. This approach does not allow the sample
under analysis to communicate with the real Internet. Instead, commonly used
network services are simulated and all traffic is redirected to these services. Such
services include but are not limited to DNS, mail, IRC, and file servers. If the
simulation is complete enough the malware will exhibit its malicious behavior and
the analysis is completely self-contained. Malware that tries to update over the
Internet will fail to do so, and bots that wait until they receive commands from
their master most likely will stay dormant.

Filtered Internet access. While the malware is granted access to the Internet,
this access is limited and tightly monitored. This is commonly accomplished by
applying techniques that mitigate the malicious effect and volume of the malware
generated traffic. Filtering outgoing mail traffic or applying intrusion detection and
prevention tools provide this functionality. By additionally applying traffic shaping
or rate limiting on the malicious traffic, the negative effect on the Internet and its
users is kept to a minimum.

4.6 The Malware Analysis Arms Race and its Consequences

As mentioned in Section 2.3, an arms race has evolved between the authors of
malware and security analysts that need to understand a malware’s behavior in
order to create efficient countermeasures. This section elaborates on the prevalent
measures that malware authors apply today to allow their samples to evade analysis.
Where appropriate, we also mention techniques that were subsequently adopted by
security analysts and tools to overcome these countermeasures. Note, however, that
the use of these techniques is often not unique to malware. Authors of legitimate,
benign programs might also make use of such techniques to protect their programs
from being analyzed or reverse engineered.

4.6.1 Self Modifying Code and Packers. Historically, malware used self mod-
ifying code to make static analysis more cumbersome and disguise its malicious
intents. While in the beginning such modifications were performed by incorporat-
ing the self modifying parts in the malware itself, more recent developments led to
so called packer tools. A packer program automatically transforms an executable
(e.g., a malware binary) into a syntactically different, but semantically equivalent
representation. The packer creates the semantically equivalent representation by
obfuscating or encrypting the original binary and it stores the result as data in a
new executable. An unpacker routine is prepended to the data, whose responsibil-
ity upon invocation lies in restoring (i.e., de-obfuscating or decrypting) the data to
the original representation. This reconstruction takes place solely in memory which
prevents leaking any unpacked versions of the binary to the disk. After unpacking,
the control is handed over to the, now unpacked, original binary that performs
the intended tasks. Polymorphic variants of a given binary can be automatically
created by choosing random keys for the encryption. However, their unpacking
routines are, apart from the decryption keys, largely identical. Therefore, while
signatures cannot assess the threat of the packed binary, signature matching can
be used to detect the fact that a packer program was used to create the binary.

ACM Computing Surveys, Vol. V, No. N, 20YY.

20 · M. Egele et al.

Metamorphic variants, in contrast to polymorphic binaries, can also mutate the
unpacking routine, to encumber detection even more. According to Taha [2007]
and Yan et al. [2008], a large percentage of malicious software today comes in
packed form. Moreover, malware instances that apply multiple recursive layers of
packers, are becoming prevalent.

4.6.1.1 Mitigating the Packer problem. Dynamically analyzing packed binaries
is, in theory, not different from analyzing non-packed binaries. This is because once
the unpacking routine is finished, the original binary is executed and behaves as
if it was unmodified. However, to perform an analysis that solely focuses on the
original binary it is advantageous to first undo the packing. Different approaches
exist that allow to revert the modifications a packer has performed on a binary.

Reverse engineering the unpacking algorithm. Understanding how the unpacking
routine restores the original binary in memory, allows one to create a program
(unpacking tool) that performs the same actions and dumps the resulting binary to
disk, therefore making it available for analysis. Prior to reverting the obfuscation,
one has to determine the packing tool that was used to produce the binary in
question. For example, the PEiD [PEiD] tool is designed to answer this question.

Generic detection and reconstruction of packed code. For binaries that are ob-
fuscated with unknown packers, other reconstruction techniques have been pro-
posed in literature. The packing and unpacking steps need to be transparent for
the original binary. That is, once unpacking is finished the binary needs to be
present in its original form. Security researchers used this observation to propose
a technique that allows them to detect the end of an unpacking sequence. Then,
it is known when an unmodified version of the original binary is present in the
process address space. This detection can be accomplished by enforcing a “write
xor execute” (W ⊕ X) policy on the packed binaries’ virtual memory pages. This
technique is outlined in the following three step algorithm.

(1) Upon startup, all memory pages of the binary under analysis are marked as
executable and read only.

(2) Once the binary writes to a memory page, a page fault occurs. When catch-
ing this write permission page fault, the system modifies the page protection
settings to be read/write only (i.e., not executable or NX).

(3) As soon as the unpacking routine is completed, it transfers control to the un-
modified binary. This will lead to another page fault, due to the pages’ NX
page protection settings.

By catching these execute page faults, an analysis system is able to recognize the
end of an unpacking routine. Furthermore, the instruction that raised the execution
page fault indicates the program entry point of the original binary. Following
this approach allows an analysis system to unwrap a packed binary, even if it is
recursively packed with different packer programs. Such a system would repeat the
above stated algorithm repeatedly as often as necessary.

However, by querying the page protection settings a malware sample can detect
this approach. Therefore, for a tool implementing this algorithm it is important
to disguise these modifications from an analyzed sample. Furthermore, Virtual
memory systems allow a process to map the same physical memory page at multiple

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 21

different virtual pages each with its individual protection flags. This would allow a
malware instance to write and execute a page without being detected. Therefore,
a dynamic unpacking tool should employ countermeasures against such evasion
attempts.

4.6.2 Detection of Analysis Environments. Whereas static analysis has the po-
tential to cover all possible execution flows through a program, dynamic analysis
suffers from the problem of incomplete path coverage. Because the extraction of
information is collected while the program is executed, only the actually executed
paths are taken into account. This leads to malware instances that try to detect
analysis platforms and upon detection either terminate or exhibit non-malicious
behavior to circumvent analysis.

Chen et al. [2008] present a taxonomy of different artifacts that can be used by
malware to detect whether it is executed in an instrumented environment (e.g., in
a virtual machine, or attached to a debugger). According to the taxonomy, such
artifacts can be found in four major areas:

(1) Hardware: devices in virtual machines often can be fingerprinted easily (e.g.,
VMWare’s “pcnet32” network interface adapter, or KVM’s “QEMU HARD-
DISK” virtual hard disk).

(2) Execution Environment: refers to artifacts that are introduced to a moni-
tored process’ environment (e.g., debugger status flags as accessible by the
IsDebuggerPresent() Windows API call, or the memory address of the inter-
rupt descriptor table (IDT) in VMWare guests).

(3) External Applications: The presence of well known monitoring applications,
such as debuggers, or file-system and registry monitoring tools, can also be an
indication for an analysis system.

(4) Behavioral: The execution time of privileged instructions vary between real
hosts and systems that are executed in a virtual environment. It is straight
forward for a malware program to capture these timing differences.

While malware samples are known to detect specific analysis frameworks, more
generic approaches exist that detect whether a program is executing inside an em-
ulated or virtualized environment [Ferrie 2007; Lau and Svajcer 2008; Rutkowska
2004; Zeltser 2006]. Raffetseder et al. [2007] propose multiple approaches to de-
tect an emulator by detecting differences in the behavior of emulated system when
compared to real hardware. These approaches rely on CPU bugs, model specific
registers, and differences in timing. In addition, Garfinkel et al. [2007] illustrates
detection possibilities based on logical, resource, and timing discrepancies. Since
some analysis techniques facilitate the trap flag in the EFLAGS register to create
fine grained (on the machine instruction level) analysis, malware samples can detect
such approaches by reading the EFLAGS register and inspecting the specific bit
within.

4.6.2.1 Countering Anti-analysis Techniques. Currently, many malware sam-
ples cease to exhibit their intended malicious behavior when they detect an emula-
tion or virtualization environment. This behavior is exploited by Chen et al. [2008]
to propose protection mechanisms through the implementation of light-weight fake

ACM Computing Surveys, Vol. V, No. N, 20YY.

22 · M. Egele et al.

artifacts of such environments. Their evaluation showed that in many cases such
mechanisms are successful in deterring malware from performing its harmful ac-
tions. The growing acceptance and application of virtualization technology in the
foreseeable future will reveal whether this behavior is still viable. Alternatively,
malware authors might drop such generic detection techniques to not preclude too
many legitimate targets from infection.

In order to discover and mitigate such evasion attempts two solutions seem pos-
sible. First, one can try to learn what differences between the analysis environment
and a common computer system make the malware change its behavior. By elim-
inating the differences, and rerunning the analysis the malware will exhibit its
malicious behavior. The second possibility is to modify the malware during exe-
cution, thus forcing different execution paths to be executed [Moser et al. 2007a;
Brumley et al. 2007].

Existing analysis systems already provide a variety of countermeasures to prevent
their detection. Depending on which parts of the system are modified to perform
the monitoring, different techniques can be applied to hide the presence of the
analysis tool.

For approaches that implement at least parts of their analysis capabilities in
the same operating system instance as the analyzed sample, it is possible to hide
these components by employing rootkit techniques. For example, to hide additional
analysis processes from the analyzed sample, a rootkit component can filter the
results of the API calls that return the list of currently loaded processes. Similar
techniques can be applied to filter modules that would enable a malware sample to
identify an analysis system by enumerating all loaded modules. However, malware
that contains a kernel-mode component can circumvent such hiding techniques by
accessing the corresponding memory structures directly without invoking any API
calls.

Analysis systems that modify the analyzed sample during execution in memory
can conceal these modifications by storing a copy of the unmodified pages and
marking the modified memory pages as not present in the page table. A sample
might verify its own integrity by computing a hash value over all its memory pages.
By computing this value for a an unmodified version of the binary and storing the
intended value in the binary itself, the sample could detect modifications to its
memory pages by comparing the two values. However, since the modified pages are
marked as not present, a page fault will occur for every access by the sample. The
page fault handler can be set up to report an unmodified version of the memory
page in such instances. Thus, the integrity check will pass and the modifications
performed by the analysis environment are successfully concealed.

As described in Section 4.6.1 modifying the page protection settings is a viable
option to detect if a packed binary has completed its unpacking stage. Of course,
a malware sample might inspect the page protection settings of its own memory
pages and thus detect such systems. However, there are multiple possibilities how
an analysis system based on this technique can evade being detected. For example,
in systems that modify the page table entries (PTE) of the running process directly,
the modifications can be disguised by maintaining shadow copies of the involved
page table structures. Furthermore, a system can mark the page table containing

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 23

the PTEs themselves as not present. Thus, if an analyzed process accesses a mod-
ified PTE it would trigger a page-fault, and the page-fault handler can return the
shadow version of that entry to the sample. Systems that operate outside of the
operating system that executes the analyzed sample (e.g., in VMMs, emulators, or
hypervisors) can maintain shadow copies of the page tables that are not accessible
to the analyzed sample at all. Thus, no additional effort is required to hide these
structures from being detected. Similarely, to the above described modifications,
such systems would modify the access permissions to the shadow page tables and
trap and handle the resulting page fault on the higher level of privilege (i.e., in
the hypervisor or emulator). By not propagating these page faults to the guest
operating system, the modifications are successfully hidden.

Additionally, analysis systems that rely on the use of machine specific registers
(MSR) might be detected if these MSRs are accessed by the sample. For example, if
the trap flag in the x86 EFLAGS register is set, the completion of the next instruc-
tion raises a trap exception and clears the flag. Thus, by repeatedly setting the flag
in the corresponding interrupt handler, one can easily produce an instruction trace
of the monitored process. However, since this flag is usually cleared during normal
operation, its state needs to be concealed from the executed sample. Furthermore,
the SYSENTER_EIP_MSR machine specific register is used to perform system calls on
recent CPUs and operating systems. Modifying its contents allows an analysis tool
to conveniently monitor the invocation of system calls. However, this modification
must be hidden from the analyzed sample. Commonly, systems that modify MSRs
can conceal these modifications by maintaining shadow version of these registers
and ensuring that the analyzed sample only has access to the shadow versions.

4.6.3 Logic Bombs. Instead of detecting the analysis framework, malware can
also implement so-called logic bombs to hide its malicious intent. For example, a
malware might only exhibit its malicious tasks on a certain date 1. If the system
date on the analysis machine at the time the analysis is performed indicates a
different day, the malicious behavior cannot be observed. Nevertheless, all infected
machines would perform the malicious tasks at the intended day. Another form
of logic bomb is the reliance on user input. For example, a malware might stay
dormant until a certain number of keys have been pressed by the user. If the analysis
tool does not emulate this user input, the malicious tasks are not performed and,
thus, cannot be monitored. Conditional code obfuscation [Sharif et al. 2008] can be
applied to further hinder analysis tools to perform their intended task. Following
this scheme, the binary representation of a program that depends on a trigger
mechanism (e.g., a bot receiving a command), is replaced with an encrypted version
thereof. The encryption key is chosen in a way that it is implicitly available when
the code should be executed (e.g., the received command string), but not present in
the program otherwise. For example, a conditional piece of code of a bot program
might start scanning for new victims as soon as the bot receives a scan command.
This code is then encrypted with the key scan and the check whether the code
should be executed does compare the hash values instead of the plain text. Thus,

1The infamous “Michelangelo” virus only executes on the 6th of March, the birthday of the Italian
renaissance painter.

ACM Computing Surveys, Vol. V, No. N, 20YY.

24 · M. Egele et al.

the key is successfully removed from the binary but present as soon as the bot is
instructed to execute a scan action.

4.6.4 Analysis Performance. Another important issue for malware analysis sys-
tems is performance. Every CPU cycle that is spent for the analysis is missing
somewhere else. This results in a usually noticeable slowdown for the analysis tar-
get. More importantly, the execution of analysis tasks might lead to the violation
of timing constraints in the operating system that executes the sample under anal-
ysis. For example, if the extensive analysis that has to be performed at program
startup delays the creation of the new process for too long the OS might consider
the process unresponsive, kill it, and therefore inhibit a thorough analysis of the
process in question.

To counter this, different techniques are applied to cloak the slowdown introduced
by the analysis. Such techniques include patching the RDTSC time-stamp counter
register or slowing down time in an emulated or virtual environment. These ap-
proaches only work for the host that runs the analysis. If the sample under analysis
interacts with other components in the network, applying such timing tricks might
lead to unreliable networking behavior due to timeouts.

Throughput, that is, the number of analyzed samples per time unit, can also be
used as a performance indicator for malware analysis systems. In dynamic analy-
sis, samples are executed in a controlled environment. This execution takes time.
Additionally, managing tasks, such as setting up the environment and collecting
analysis results consumes time as well. Summing up these times results in an up-
per bound limit on the performance of a given tool. Most malware, once started,
remains running as long as the infected operating system runs. Thus, analyzing
the whole lifetime of a malware sample is unfeasible. The common approach to
counter that, is to terminate the analysis once a given timeout expires. The value
of this timeout has great influence on the throughput of an automated malware
analysis system. Nicter [Inoue et al. 2008], for example, is able to analyze 150 -
250 samples per day. With samples executing for 30 seconds (wall clock time), the
remaining 22 hours a day are consumed by managing tasks, such as resetting the
analysis environment. If an analysis approach is implemented with scalability in
mind, the throughput can be raised by employing more hardware resources, such
as additional systems performing the analysis, or faster equipment.

5. MALWARE ANALYSIS TOOLS

The following section gives an overview of the existing approaches and tools that
make use of the presented techniques to analyze unknown and potentially malicious
software. For each tool, we give a brief summary describing which of the techniques
from Section 3 are implemented. A discussion on the approaches, possible evasion
techniques, and advantages over other approaches is given as well.

The analysis reports generated by the tools in this section give an analyst valuable
insights into actions performed by a sample. These reports lay the foundation for
a fast and detailed understanding of the sample. This knowledge is necessary for
developing countermeasures in a timely manner.

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 25

5.1 Anubis

The analysis of unknown binaries (Anubis) project [Anubis] is based on TTAnalyze
presented in Bayer et al. [2006]. Anubis executes the sample under analysis in
an emulated environment consisting of a Windows XP operating system running
as the guest in Qemu [Bellard 2005]. The analysis is performed by monitoring
the invocation of Windows API functions, as well as system service calls to the
Windows Native API. Additionally, the parameters passed to these functions are
examined and tracked.

Since Anubis executes the sample to analyze in a complete Windows operating
system, it is important to focus on the operations that are executed on behalf
of the sample, and omit operations that occur as normal behavior of the OS or
other running processes. To this end, Anubis makes use of the knowledge that
Windows assigns each running process its own page directory. The physical address
of the page directory of the currently running process is always present in the
CR3 CPU register. Thus, upon the invocation of the sample to analyze, Anubis
records the value of the CR3 register and performs the analysis only for this process.
By monitoring the APIs and system calls that are responsible for creating new
processes, Anubis is able to monitor all processes that are created by the original
sample.

The monitoring of function calls is based on comparing the instruction pointer
of the emulated CPU with the known entry points of exported functions in shared
libraries. To this end, Anubis manages a list of functions to monitor with their
corresponding function entry points. These addresses need to be determined dy-
namically as only their offset relative to the beginning of the library (i.e., base
address) is known in advance. The loader might decide to load the library at a
different address than the preferred base address. Thus, the real entry-point to a
function is only known after the loader mapped the library into the process’ mem-
ory space. To accomplish this, Anubis tracks all invocations of the dynamic loader
in the context of the sample under analysis.

Together with the invocation of these functions, Anubis also monitors their ar-
guments by passing the arguments to call-back routines that perform the necessary
analysis and tracking steps. For example, the usage of handles for file and registry
operations, or network sockets is tracked and allows Anubis to produce expressive
reports of the related activities.

5.2 Multiple path exploration

Automatic dynamic malware analysis tools generate their reports based on a single
execution trace of the sample under analysis. The use of so-called logic bombs allows
malware to only reveal its malicious behavior based on arbitrary constraints. For
example, a malware sample could postpone its malicious activities until a certain
date is reached, or stop executing if necessary files cannot be found on the infected
system. To overcome this shortcoming, Moser et al. [2007a] present a tool that
is capable of exploring multiple execution paths for Windows binaries. This tool
recognizes a branching point whenever a control flow decision is based on data that
originates outside the monitored process. This data can only be introduced to
the process via system calls. Thus, a branching point is detected if a control flow

ACM Computing Surveys, Vol. V, No. N, 20YY.

26 · M. Egele et al.

decision is based on a return value of a system call (e.g., the current system time).
Every time such a situation occurs, the tool takes a snapshot of the running process
that allows the the system to be reset to this state. Execution is continued and after
a timeout (or process termination), the system is reset to the recorded snapshot.
Then, the value that is responsible for the control flow decision is manipulated in
a way that the control flow decision is inverted, resulting in the execution of the
alternate path.

This approach extends Anubis (see Section 5.1) and applies dynamic taint track-
ing to analyze how data returned from system calls is manipulated and compared
by the process under analysis. The system calls, responsible for introducing the
taint labels handle file system and registry access, as well as network activities
and date/time information. When manipulating a value upon resetting the sys-
tem state, special care is taken by the system to update the value used in the
corresponding compare instruction in a consistent manner. This means that not
only the value directly involved in the comparison must be changed, but all other
memory locations that depend on this value have to be manipulated in a consistent
manner to make the execution of alternative paths feasible. To achieve this, the
system stores for each branching point a set memory locations that depend on the
compared value combined with a set of linear constraints describing these depen-
dencies. During a reset, the set of constraints is evaluated by a constraint solver to
produce the values that need to be substituted to force execution down the other
path. If a dependency cannot be modeled as a linear constraint (e.g., a value and
its hash value have non linear dependencies), then the system is not able to update
the memory locations in a consistent manner.

5.3 CWSandbox

Willems et al. [2007] created a tool called CWSandbox that executes the sample
under analysis either natively or in a virtual Windows environment. The analysis
functionality is implemented by hook functions that perform the monitoring on the
API level. Additionally, monitoring of the system call interface is implemented.
The system is designed to capture the behavior of malicious software samples with
respect to file system and registry manipulation, network communication, and op-
erating system interaction. The virtual system is a full installation of a Win32 class
operating system under which the sample under analysis is executed together with
the analysis components.

API hooking is performed by rewriting the sample under analysis as soon as it is
loaded into memory. The applied hooking technique installs a monitoring function
that can perform the analysis before and after every API call. To this end, the
malware process is started in a suspended state, meaning that the sample and all
the libraries it depends on are loaded to memory but no execution takes place
yet. During the initialization, CWSandbox examines the exported API functions
of all loaded libraries and installs the necessary hooks. This happens by backing
up and replacing those instructions that are located at the the first five bytes of
the API function with a non conditional jump (JMP) instruction to the monitoring
function. When the sample invokes the API function, the control flow is diverted to
the hook which performs parameter analysis. After the analysis, the hook executes
the backed up instructions before continuing execution in the original API function.

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 27

Once the API function returns, control is implicitly given to the hook function that
can now post process and sanitize the results of the API call before handing it
back to the analyzed sample. This process works for all libraries that are defined
in the import table of the sample because they are automatically loaded at the
process startup. However, explicit binding of DLLs as performed by Windows’
LoadLibrary API call allows an application to dynamically load a library during
runtime. Since malware could use this to circumvent analysis, the LoadLibrary

API is hooked as well and performs the previously mentioned binary rewriting once
the requested library is loaded into the process’ memory space. In addition to API
hooking, CWSandbox also monitors the system call interface allowing the analysis
of malware that uses system calls directly in order to evade analysis.

The analysis tool itself consists of two major parts: a controlling process and a
DLL that is injected into all processes that need to be monitored. The controlling
process is in charge of launching the sample under analysis and receives all analysis
output from the hook functions. In order to have easy access to the hook functions,
they are compiled into a DLL which is injected into the address space of the sample
on startup. A malware instance might try to evade analysis by spawning another
process that escapes the monitoring. As the APIs that control process and threat
creation are hooked, this is not a viable evasion strategy. These hooks will inject
the analysis DLL, and perform the required binary rewriting in every process that
is created by the sample under analysis. The hooks in these processes will also
report their analysis information to the controlling process.

A process can query the operating system for running processes as well as for
loaded libraries. Since this information would reveal the presence of the analysis
framework (i.e., the controlling process, the injected library, and the communication
channel between them), CWSandbox applies rootkit techniques to hide all system
objects that could reveal the presence of the analysis framework from the process
under analysis. To this end, the APIs that are used to query these system details
are hooked as well. Once these functions return, the corresponding hooks sanitize
the results (e.g., filtering the controlling process from the current process list, or
removing the injected DLLs from the loaded modules list), therefore hiding their
presence from potential malware samples.

The output of an analysis run is a report file that describes from a high level
view what actions have been performed by the sample during analysis. This report
can be used by a human analyst to quickly understand the behavior of the sample
as well as the techniques that are applied to fulfill its task. Having this information
generated fast and automatically allows the analyst to focus his attention to the
samples that require deeper (manual) analysis over samples that exhibit already
known behavior.

5.4 Norman Sandbox

The Norman Sandbox [2003] is a dynamic malware analysis solution which executes
the sample in a tightly-controlled virtual environment that simulates a Windows
operating system. This environment is used to simulate a host computer as well as
an attached local area network and, to some extent, Internet connectivity. The core
idea behind the Norman Sandbox is to replace all functionality that is required by
an analyzed sample with a simulated version thereof. The simulated system, thus

ACM Computing Surveys, Vol. V, No. N, 20YY.

28 · M. Egele et al.

has to provide support for operating system relevant mechanisms such as memory
protection and multi-threading support. Moreover, all required APIs have to be
present to give the sample the fake impression that it is running on a real system.
Because the malware is executed in a simulated system, packed or obfuscated ex-
ecutables do not hinder the analysis itself. As described in Section 4.6.1 a packed
binary would simply perform the unpacking step and then continue executing the
original program. However, to minimize the time spent in analysis, binaries that
are obfuscated by a known packer program are unpacked prior to their analysis.

Norman Sandbox focuses on the detection of worms that spread via email or P2P
networks, as well as viruses that try to replicate over network shares. In addition,
a generic malware detection technique tries to capture other malicious software.

The Norman Sandbox provides a simulated environment to the sample under
analysis that consists of custom-made versions of user-land APIs necessary for the
sample to execute. The functions providing these APIs are heavily instrumented
with the corresponding analysis capabilities. Furthermore, to keep the simulation
self-contained, these replacement APIs do not perform any interactions with the
real system. Instead, the results of such API calls are created in a way that allows
the malware to continue execution (e.g., filling in the correct API function return
values). Bookkeeping takes place if required. This is required to thwart some
detection techniques applied by malicious software. For example, a malware sample
might try to detect the analysis tool by writing to a file and later on trying to read
from that file to check if the stored information is still there. If the analysis tool
does not provide the correct results to the read request the malware can detect that
it is being analyzed and terminate without revealing its true malicious intents.

Special care is taken with respect to networking APIs. All networking requests
issued by the sample under analysis are redirected to simulated components. If, for
example, a sample intends to spread itself via email, it has to contact an SMTP
server to send email. The connection attempt to TCP port 25 is detected, and
instead of opening a connection to the real server, the connection is redirected
to a simulated mail server. This is not noticeable for the sample under analysis,
and it will start sending the mail commands including the malicious payload. An
analogous approach is followed when a sample tries to write to a simulated network
share, or tries to resolve host names to IP addresses via DNS queries.

The authors claim that it is not a security problem to feed additional informa-
tion into the simulated system. Thus, a sample under analysis might be allowed to
download files from the “real” Internet. Even with this option in place, the con-
nection is not under control of the sample, but controlled by the analysis tool that
performs the download on behalf of the malware, and passes the result on to the
sample. The allowed requests are rigorously filtered, allowing only file downloads.
All other requests are dropped. The rationale behind this is to counter the spread
of worms (e.g., Nimda, CodeRed [Moore et al. 2002]) that reproduce themselves by
sending HTTP requests to web servers.

Instrumenting the APIs enables effective function call hooking and parameter
monitoring. The observed behavior (e.g., function calls, and arguments) are stored
to a log file. Furthermore, Norman Sandbox also monitors auto-start extensibility
points (ASEPs) that are can be used by malware instances to ensure persistence

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 29

and automatic invocation after shutdown - reboot sequences.

5.5 Joebox

During the dynamic analysis of a potentially malicious sample, Joebox [Buehlmann
and Liebchen] creates a log that contains high level information of the performed
actions regarding file system, registry, and system activities. Joebox is specifically
designed to run on real hardware, and not to rely on any virtualization or emulation
technique. The system is designed as a client server model where a single controller
instance can coordinate multiple clients that are responsible for performing the
analysis. Thus, it is straight forward to increase the throughput of the complete
system by adding more analyzing clients to the system. All analysis data is collected
by the controlling machine.

Joebox hooks user mode API calls as well as system call invocations. Every li-
brary providing an API contains a dictionary of the function names it exports. The
names are accompanied with a pointer to the implementation of these functions
within the library. This directory, called the export address table (EAT), is queried
by a process that wishes to call a function in that library. The SSDT (system ser-
vice descriptor table) is a similar structure that maps the system call numbers to
their implementation via function pointers. Joebox implements hooking on these
structures to perform its analysis task. Hooking EAT entries allows Joebox to mon-
itor function invocations in libraries, whereas hooking the SSDT entries provides
insight into how the user-mode / kernel-mode interface is used by the sample under
analysis.

Binary rewriting of API functions in user-mode is applied once the library is
loaded to memory. Since these modifications are usually easy to detect by a running
process, a kernel mode driver is responsible for cloaking the performed changes. To
prevent detection, the driver installs a page fault handler and marks the memory
page containing the executable code of the hooked function as not present. As soon
as a process tries to read from that memory page, to detect possible modifications,
the page fault handler is called for the missing page and returns a fake, unmodified
version of the page to the application. To further disguise the presence of an analysis
framework, Joebox uses the AutoIT [Bennett] toolkit to emulate user interaction
with the machine during the analysis phase. The rationale behind this is that
malware might stay dormant until user interaction takes place in order to evade
less sophisticated automated analysis tools.

5.6 Ether: Malware Analysis via Hardware Virtualization Extensions

Dinaburg et al. [2008] propose a general transparent malware analysis framework
based on hardware virtualization. They motivate their work by stating that existent
analysis tools suffer from detectability issues that allow malicious code to detect
the fact that it is monitored. Ether’s transparency property results from the fact
that it is implemented in a (Xen) hypervisor that resides in a higher privilege level
than the monitored guest operating system. Ether has support for the monitoring
of executed instructions, memory writes, and, in Windows XP environments, exe-
cution of system calls. Furthermore, Ether provides mechanisms for the Windows
XP version to limit the analysis to a specific process only.

Instruction execution monitoring is implemented by setting the trap flag of the

ACM Computing Surveys, Vol. V, No. N, 20YY.

30 · M. Egele et al.

CPU when code in the guest system is executed. This results in the raising of a
debug exception after every executed machine instruction. Thus, Ether is able to
record and trace the instructions that are actually executed by the guest operating
system, or the monitored process respectively. With this information, a human
analyst has a very detailed representation of the actions that were performed by
the analyzed system. Different malware samples already check for the presence of
the trap flag when employing anti-debugging techniques [Mehta and Clowes 2003;
Falliere 2007]. If the trap flag is detected to be set, these malwares might disguise
their malicious intent and circumvent analysis. To prevent that from happening,
Ether monitors and modifies all instructions that access the CPU flags, thus pre-
senting the expected result to the guest OS. A shadow version of the trap flag is
maintained by Ether representing the guest operating systems’ assumption of the
flag’s value. Queries from the guest system to get or set the trap flag are always
evaluated on the shadow version of the flag. This is necessary as malware samples
are actively using the trap flag to perform their task (e.g., polymorphic decoding
engines [Labir 2005; Daniloff 1997]).

Monitoring of memory writes is accomplished by setting all page table entries
to read only. As soon as the guest OS performs a write operation, a page fault is
raised. Ether checks if the reason for this fault lies in normal guest operation (e.g.,
the system tries to access a swapped out page) and passes the faults on in these
cases. All other faults are handled by Ether as they indicate memory writes by
the guest OS, and the necessary analysis steps can be performed. Since Ether only
modifies the settings of the shadow page tables, which are not visible to the guest
OS, these changes cannot be observed by software running in the guest OS.

Under a Windows XP guest OS Ether implements system call monitoring as fol-
lows. In modern CPUs the SYSENTER_EIP_MSR register holds the memory address
of executable code responsible for dispatching system calls. For an application to
perform a system call, it is necessary to load the system call number and arguments
to the specified registers and stack locations, and then to execute the sysenter in-
struction. Execution then continues at the address stored in the SYSENTER_EIP_MSR
register. This code, executing in kernel-mode, is responsible for reading the system
call number and parameters and invoking the respective system functions. Ether
monitors system call invocations by modifying the value of the SYSENTER_EIP_MSR

register to point to an unmapped memory region. Thus, accessing this address
results in a page fault. As soon as a page fault occurs for the specified address, the
system is aware that a system call was invoked, restores the original value and exe-
cutes the system call. Once the system call is detected, Ether has full access to the
memory of the guest OS enabling the analysis of the parameters. After completion,
the register is reset to the invalid address to catch the next system call invocation.
Access to the SYSENTER_EIP_MSR is completely mediated by Ether. This makes it
possible to present the expected result to the guest upon request.
The above technique only works for system calls that are invoked via the SYSENTER
instruction. Thus, Ether also needs to provide monitoring capabilities for the dep-
recated INT 2E style of system call invocations. Again, the value of the register
pointing to the interrupt descriptor table is changed to an address that will result
in a page fault upon access. Similar techniques as the ones described above are

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 31

applied here.

5.7 WiLDCAT

WiLDCAT is a framework for coarse and fine-grained malware analysis. It con-
sists of multiple components that implement stealth breakpoints (Vasudevan and
Yerraballi [2005]), binary instrumentation(Vasudevan and Yerraballi [2004] and Va-
sudevan and Yerraballi [2006b]), and localized execution (Vasudevan and Yerraballi
[2006a]).

The development of stealth breakpoints is motivated by the observation that
many malware samples employ code verification or dynamic code generation which
renders software breakpoints useless. In addition, hardware breakpoints can be
rendered ineffective by malware if the debugging registers are used for computations.
VAMPiRE [Vasudevan and Yerraballi 2005] implements breakpoints by setting the
not-present flag of the memory page that contains the instruction on which to
break. A page fault handler is installed to catch the fault that is raised as soon
as any instruction of that page is executed. If the instruction that triggered the
fault matches the memory location of the breakpoint, VAMPiRE stops execution.
Combined with a debugger, this system can be used to single step through the
application from that point on. The system implements stealth techniques to stop
malware from easily detecting the fact that it is being analyzed. For example,
VAMPiRE uses the CPU’s trap flag in the EFLAGS register to implement single
stepping. Similarly to Ether’s approach a shadow copy of this register is used to
present any querying application with the expected answer, thus, hiding the true
value of the EFLAGS register. Furthermore, a clock patch is applied to conceal the
latency that is introduced by the page fault handler.

Two components in the framework provide binary instrumentation.
SAKTHI [Vasudevan and Yerraballi 2004] implements binary instrumentation

by rewriting a target function to redirect control to an instrumented version. This
allows for pre- and post processing of arguments and results and also allows the
system to call the original target function.

SPiKE [Vasudevan and Yerraballi 2006b] also provides binary instrumentation,
however, instead of target function rewriting, it builds on top of VAMPiRE. The
system inserts breakpoints at the desired locations in the source code and maintains
a table which relates a breakpoint to a so-called instrument. Once the breakpoint
triggers, the system redirects control flow to the instrument that can perform any
preprocessing as necessary. If needed, the instrument can call the unmodified ver-
sion of the target function and after its return, post-process or sanitize any results.
In addition, SPiKE also allows redirection in DLL files by modifying the binary
file on disk before it is being loaded. During this modification, SPiKE adds the
analysis code to the DLL and modifies entries in its export address table to point to
the analysis functions instead of the target functions. An application invoking the
instrumented function calls the hook function that performs the desired analysis
and then calls the original function.

The last component in the WiLDCAT framework is Cobra [Vasudevan and Yerra-
balli 2006a], a system that supports localized executions. With localized execution,
the authors refer to a technique that breaks a given program stream into smaller
basic blocks that are executed in turn. A basic block is a sequence of instructions

ACM Computing Surveys, Vol. V, No. N, 20YY.

32 · M. Egele et al.

that is either terminated with a control flow modifying instruction (e.g., call, jmp)
or when a certain maximum length is reached. After the execution of each basic
block, the system invokes an analysis function that can perform the necessary tasks
on a fine grained level. Because creating basic blocks at runtime is costly and the
instrumentation might not be necessary in all cases, Cobra allows the user to define
so-called overlay points. An overlay point is the address of an instruction upon
whose execution the system switches to localized execution. Release points, respec-
tively, are used to stop the localized execution again. Pairs of overlay and release
points can be used to prevent the system from performing localized execution in
well known API functions. Apart from these exceptions, the premise of Cobra is to
only execute code that is split into blocks and instrumented accordingly. Privileged
instructions might be used by a malware sample to detect the analysis framework.
To prevent this, the set of relevant privileged instructions has been identified. The
risk of detection is mitigated by scanning the basic blocks for occurrences of such
functions and replacing these privileged instructions with so-called stealth implants
that hide all traces of the analysis tool.

5.8 Hookfinder

When malware gathers information from an infected system, it is important, from
an attacker’s point of view that this happens in a stealthy manner to evade de-
tection. Commonly, malicious programs, such as spyware or rootkits implant
hooks into the system to be notified when events of their interest occur. For
example, a keylogger for the Windows environment might create a hook using
the SetWindowHookEx API function, which is notified whenever a key is pressed.
Malware samples are free to employ any of the hooking techniques outlined in Sec-
tion 3.1. Hookfinder is a system capable of detecting such hooking techniques and
produces detailed reports on where these hooks are and how they were implanted
into the system. The system monitors a process and detects an implemented hook
if it observes that the control flow is redirected to this process by an earlier modi-
fication to the system state (e.g., memory write, API calls, etc.).

Hookfinder implements this approach by employing data and address taint track-
ing techniques in a modified version of the Qemu [Bellard 2005] full system emulator.
All memory locations written by the process under analysis are tainted and their
taint status is propagated through the system. Whenever the instruction pointer
contains a tainted value, this is an indicator for a hook being executed. In addition
to taint tracking, Hookfinder also keeps a detailed impact trace. This trace com-
prises of all instructions that involve tainted data and enables the reconstruction of
the method that was used to implant the hook into the system. Based on the impact
trace, Hookfinder can produce information such as the name of the function that
was used to implant the hook (e.g., SetWindowHookEx). Moreover, Hookfinder pro-
vides detailed information on how the malware calculates the address of a function
pointer to overwrite. Such information includes querying of global data structures
and traversing their members until the corresponding address is found. Hookfinder
does not rely on any a-priori knowledge of how hooks are implanted into a system
and it is thus able to give detailed information on hooking techniques that have not
been previously encountered.

Similarly to Panorama (see Section 5.10.3), Hookfinder employs a kernel module

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 33

that executes in the emulated operating system to bridge the semantic gap. This
module is responsible for gathering the necessary high level information (e.g., loaded
libraries, currently executing process, etc.), and communicating this information to
the underlying analysis system.

5.9 Dealing with Packed Binaries

The hurdles for analysis that packed binaries bring along are outlined in Sec-
tion 4.6.1. This section presents tools that implement techniques to reverse, or
mitigate these problems.

5.9.1 Justin. Guo et al. [2008] present Justin, an automatic solution to the
packer problem. The main goal of Justin is to reverse the packing of malware
to a state in which a common signature based AV engine can detect the threat.
Justin is based on the idea that after the unpacker routine has completed, a copy
of the original malware is present in the memory space of the process. To apply a
signature-based AV scanner successfully, two prerequisites have to be fulfilled. (1)
The address space layout of the program embedded within a packed binary after it is
unpacked is the same as that if the program is directly loaded into memory, and (2)
the unpacker completely unpacks the embedded program before transferring control
to it. Requirement (1) results from AV scanners that rely on the memory layout of a
binary and is usually fulfilled by unpacking routines since most original executables
rely on a non changing memory layout (i.e., they are not location independent).
Requirement (2) is also fulfilled by most unpacking routines. Intuitively, consider a
packer program whose unpacking routine does not unpack the whole original binary
at once. This would require that at the time the packed binary is generated, the
packer has to disassemble the target binary, and insert instructions that call the
unpacker routine upon execution. If such an instruction is generated not at an
instruction boundary (i.e., partially overwriting existing instructions) the call will
not be executed by the CPU. Thus the rest of the binary will not be unpacked and
execution will most likely terminate abnormally. Since this process is non trivial
to implement and not guaranteed to work with arbitrary binaries, packer programs
today refrain from implementing such techniques. However, if malware authors
created their binaries in a way that allows a packer to perform such modifications,
(e.g., providing callbacks to an unpacking routine) assumption (2) would not hold.

The main challenge for Justin is to recognize the end of execution of the unpacker
method which is identical to detect the start of execution of the original code. Three
different methods are introduced for detecting the end of execution of the unpacker
method. Since the original binary is reconstructed in memory before execution, one
method is based on detecting the transfer of control flow to a dynamically created
or modified memory page. Moreover, packed programs should not be aware of the
fact that they were unpacked before execution. Thus, the second method is based
on the assumption that the stack of an unpacked binary should be similar to the
stack of a fresh loaded not-packed version of the program. The third method is
based on the assumption that a successful unpack leads to the correct set up of the
command line arguments to the original program on the stack.

To detect the execution of dynamically created code, Justin applies the technique
described in Section 4.6.1 (i.e., W ⊕ X page protections). Once this is detected, the

ACM Computing Surveys, Vol. V, No. N, 20YY.

34 · M. Egele et al.

memory image is scanned by the AV scanner to check for possible known threats
in the unpacked binary. To circumvent any problems that might arise when the
binary itself tries to modify page protection settings, Justin records the changes
but keeps its own settings in place. When the binary queries the protection flags,
Justin reports the recorded information if present.

5.9.2 Renovo. Kang et al. [2007] propose Renovo as a dynamic solution to the
packer problem that automatically extracts the hidden code of a packed executable.
The authors argue that it is an intrinsic feature of packed programs that the original
code will be dynamically generated and executed, no matter what packing software
is used. Renovo is able to reconstruct a detailed representation of the original
binary (i.e., its binary code). Additionally, Renovo produces useful information
such as the original entry point.

To reconstruct the hidden code that is restored by an unpacker method, Renovo
applies full system emulation techniques to monitor the execution. In addition to
the system memory of the emulated system, Renovo manages a shadow memory
that keeps track of memory write accesses at byte level. This shadow memory holds
a flag for every byte indicating if the byte in memory was written to or not. Initially,
all flags in the shadow memory are cleared. Every write by the analyzed program
flags the affected bytes as being dirty. If the currently executed instruction (pointed
to by the instruction pointer) is marked as being dirty, the system identifies the
execution of a dynamically generated instruction. By this time, the system has
detected a so-called hidden layer. The hidden code and data is identified as the
written memory contents, and the original entry point is given by the value of the
instruction pointer. The authors argue that malware might apply multiple layers
of packers to complicate the analysis even further. To overcome this, Renovo stores
the gathered data and resets the shadow memory dirty bits after a hidden layer
is discovered, repeating the whole process if necessary. The technique to detect
the execution of dynamically generated code is similar to the technique applied
by Justin and described in Section 4.6.1. However, keeping the information in a
shadow memory in the emulator frees the authors of Renovo to disguise their system
from malware that modifies and verifies page protection settings.

Renovo is implemented in a whole-system emulator. As mentioned in Section 4.2
such systems only have access to the hardware state of the emulated system. Since
Renovo aims at analyzing single processes, the semantic gap between the hardware
view and the operating system concept of a process must be bridged. This task is
performed by a kernel module that is installed in the emulated system. It is the
task of this module to identify newly created processes and the loading of libraries.
Library loading is of importance as the module loader might decide to map the
DLL to a memory area that contains dirty tagged bytes which are no longer used
by the program. To rule out the false impression that the module contains dirty
labeled instructions, the labels of the memory regions a module occupies are cleared
as soon as it is loaded.

5.9.3 PolyUnpack. Royal et al. [2006] identify obfuscation techniques of unpack-
executing malware to hamper the work of malware detection tools. To counter such
evasion attempts, they propose a system to automatically extract hidden code from

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 35

unpack-executing malware – PolyUnpack. This system follows a hybrid static dy-
namic analysis approach to identify the execution of dynamically-generated code.
This detection is facilitated by the following two phase algorithm. First, the binary
under analysis is disassembled. The second step comprises of running the binary
in a tightly monitored-environment where for every executed instruction, the cor-
responding instruction trace is calculated by performing in memory disassembly. If
an instruction sequence in memory is not present in the disassembled binary from
the first step, this is an indication of dynamically generated code that is about to
be executed.

PolyUnpack operates on Microsoft Windows executables and applies debugging
techniques to provide the tightly monitored environment. The second step of the
detection algorithm single steps through the binary and the calculation of instruc-
tion sequences and their comparison is performed at every instruction. Special care
has been taken to deal with shared libraries. Since it is very likely that single step-
ping through DLL code will result in instruction sequences that are not present in
the original binary, calls to functions exported by DLLs are handled in a special
manner. Upon loading a DLL into the process’ memory space, PolyUnpack keeps
track of the memory area that is occupied by that DLL. Once execution takes place
in such a memory area, the return address is read from the stack and a breakpoint
is set to that address. The program is resumed and single stepping is used again
once the breakpoint triggers (i.e., the exported function returns).

The result of PolyUnpack is either a plain text disassembly of the unpacked code,
a binary dump of the code or a complete executable version thereof.

5.9.4 OmniUnpack. Martignoni et al. [2007] designed a framework to reverse
the packing of binaries and run an off the shelf anti-virus scanner on the recovered
code. OmniUnpack is implemented as a solution for Windows XP and the analysis
focuses on a single packed binary. The authors argue that the unpack routine of a
packer creates the original code of the binary in memory before executing it. Once
this behavior has been observed by the system, an anti-virus scanner is used to
check whether the newly generated code contains any known malicious patterns.
Similarly to Justin and Renovo, OmniUnpack detects the execution of dynamically
generated code by implementing the detection technique described in Section 4.6.1
following the W ⊕ X memory page protection scheme.

In contrast to the aforementioned tools, however, OmniUnpack tries to avoid
the execution of the anti-virus scanner at every detection of such an instance.
To this end, OmniUnpack exploits the observation that malicious code can only
affect the underlying operating system through the system call interface. Therefore,
OmniUnpack defines a set of “dangerous” system calls (e.g., registry/network/file
write operations, process creation, etc.). Once such a dangerous system call is
invoked, the system examines the set of modified and executed pages and invokes
the AV scanner on these memory areas. Enforcing the page protection policy and
managing the sets of written and written-executed pages is performed by a kernel
mode component. The gathered information is relayed to the AV engine running
in user-space as soon as a dangerous system call is invoked by the program.

The usage of an AV scanner for scanning memory regions of an executing process,
instead of offline scanning of files, introduces a number of restrictions on the used

ACM Computing Surveys, Vol. V, No. N, 20YY.

36 · M. Egele et al.

signatures. For example, the signatures must characterize those parts of the mal-
ware that have to be present in memory when the dangerous system call is invoked.
In addition, the signature should characterize the unpacked (original) version of the
malware.

5.10 Spyware Analysis

As described in Section 2.1 spyware refers to malware samples which gather sensi-
tive information from an infected machine and leaks this information back to the
attacker. This section elaborates on analysis tools that are specifically tailored to
analyze such spyware components.

5.10.1 Behavior-based spyware detection. Kirda et al. [2006] propose a hybrid
static-dynamic analysis system to identify security breaches by spyware compo-
nents. The system focuses on spyware that comes as plug-in to the Microsoft
Internet Explorer either as so-called browser helper objects (BHOs) or toolbars.
Collecting sensitive information from a web-browser makes sense for an attacker
since this is the application where one can gather online banking account details
to initiate fake transactions, or retrieve a list of visited web pages to deliver cus-
tomized advertisements to lure the user into insidious purchases. The preferred
way for BHOs and toolbars to retrieve any information from the browser is by
subscribing to the browser’s events. These events are fired, for instance, when the
user navigates to a new URL by clicking on a link, or when a web page is finished
downloading and rendering. Other events indicate that a form is submitted, and al-
low for the collection of login credentials. Based on the observation that a spyware
component has to use system services to leak the gathered information out of the
process (e.g., writing to a file or sending over a network connection), the authors
propose the following detection approach.

A component is spyware if it (1) monitors user behavior by interacting with the
web browser and (2) invokes Windows API calls that can potentially leak informa-
tion about this behavior.

The hybrid analysis approach applies dynamic analysis techniques to identify
the event handlers that are invoked as a reaction to browser events. It uses static
analysis methods to analyze the handler routines themselves. The system is im-
plemented as an application that provides all necessary interfaces to lure a BHO
into believing that it is running inside Internet Explorer. Once the component
registers the event handlers, a series of events are simulated, and the components
reactions are monitored. Every invoked event handler is statically checked whether
it includes Windows API calls that allow for information to be leaked the attacker.
If such a system call is identified, the component is classified as being malicious.

5.10.2 TQana. The system presented by Egele et al. [2007] is able to dynami-
cally analyze spyware that is installed as a browser plug-in to the Microsoft Internet
Explorer. These browser helper objects (BHO) are at the core of a large diversity of
malicious software that compromises the security of a user’s system. By extending
the Qemu [Bellard 2005] full system emulator with information flow capabilities,
TQana is capable to track the propagation of sensitive data through the system.
Taint labels are introduced to the system through the web browser’s Navigate

event. This event fires whenever the browser is instructed to visit a new location

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 37

by either clicking a link, selecting a bookmark, or entering a new URL to the ad-
dress bar. In addition, the page contents retrieved by the web browser are tainted.
Implemented taint sinks cover writes to the file system or registry, sending tainted
data over the network, and writing tainted data to shared memory regions. TQana
applies taint tracking to data dependencies, address dependencies as well as for cer-
tain control flow dependencies. The implemented taint tracking system associates
labels to each tainted byte, thus, being able to identify its origin. Furthermore, a
status flag is associated with each byte that indicates whether the byte was touched
by the component under analysis. This distinction is crucial as illustrated by the
following example. The host part of the entered URL is tainted data, but it does
not pose a security risk if the operating system transmits this data as part of a
DNS request to resolve the host name to the corresponding IP address. But if
the same information is transmitted by the component under analysis to a remote
server, this should be flagged as a possible security breach. For this distinction
to be made, the authors introduce the concept of “instructions that are executed
on behalf of the BHO”. An instruction is considered to be executed on behalf of
the BHO if it is present in the BHO binary, created dynamically by the BHO, or
part of a function that was invoked by such instructions. To determine whether a
function was invoked by the BHO, the system keeps track of the call stack at all
function calls. A call instruction from the BHO sets a limit on the stack pointer
and all instructions are regarded to be executing on behalf of the BHO as long as
that call frame is on the stack. Whenever the data that is flagged as ‘processed by
the BHO’ reaches a taint sink, this is logged as a possible security breach.

In addition to taint tracking, the system also implements API and system call
hooking. Furthermore, TQana monitors calls in the component object model
(COM) subsystem in Windows. All analysis tasks are performed solely from out-
side the emulated system, and, thus, have to bridge the semantic gap between the
hardware level view of the emulator and the operating systems notion of processes,
threads, and virtual memory. The hooking is implemented by monitoring the in-
struction pointer, and comparing its value to the function entry points. Upon a
match, the hook function is executed in the emulator, and gathers the required
information from the emulated system’s memory. In order to extract information
about processes and threads, the corresponding memory structures are parsed by
the system. Similarly, the list of loaded modules for each process is retrieved by
processing the respective data structures. During the analysis of a sample an Au-
toIT [Bennett] script emulates user interaction in the guest system, such as visiting
web pages, and filling out web forms.

By performing the taint tracking on physical memory, all running processes can be
monitored simultaneously. This implicitly provides the means to track information
transfers between processes via shared memory or other inter process communica-
tion mechanisms.

Performing all required analysis steps outside of the emulated system allows
TQana to perform stealthy monitoring because, as opposed to Panorama (Sec-
tion 5.10.3) and Renovo (Section 5.9.2), no kernel-mode component in the guest
system is required. However, following this approach requires the adaption to the
emulated guest operating system. To read the necessary information from the

ACM Computing Surveys, Vol. V, No. N, 20YY.

38 · M. Egele et al.

emulated memory, the system has to retrieve in memory structures of the guest
system which are not guaranteed to remain stable across operating system versions
or service packs.

5.10.3 Panorama. A system that is able to capture system-wide information
flow is presented by Yin et al. [2007]. The resulting information should give an
analyst a detailed view of how a tested program interacts with sensitive informa-
tion, thus allowing the analyst to assess this programs’ intentions. To support this
approach, the authors implemented a dynamic information flow system that applies
data and address tainting. The taint sources based on input from the keyboard,
the network, or the hard disk are responsible for introducing the taint labels to the
system. Panorama does not include dedicated taint sinks but creates a taint graph
during analysis of the suspicious program. The system uses a modified version of
the Qemu full system emulator to perform the taint tracking. The created graph
is enriched with high level information such as processes that access the data or
network connections that correspond to a certain packet payload. In order to bridge
the semantic gap between the high- level OS view and the hardware state accessible
by the emulator, the following techniques are applied.

Panorama knows for each instruction which process is currently executing, and
which module (i.e., dynamic library) is the origin of this instruction. Similarly to
Renovo (Section 5.9.2), this is realized by a kernel-mode component running in
the emulated environment that monitors process creation and library loading, and
communicates this information out of the emulated guest operating system. The
correlation between sectors of the emulated hard disk and the abstract notion of a
file in the emulated system is realized by the forensic tool “The Sleuth Kit” [Car-
rier]. For network connections, the sent IP packet headers are examined and the
correlation is established based on virtual connections (i.e., source/destination ad-
dresses and port/service numbers).

With this detailed information, Panorama constructs a taint graph during an
analysis for the analyzed sample. The taint graph is a representation of the pro-
cesses and modules that operate on the tainted data. During the analysis, a set of
test cases are executed that introduce sensitive data to the system, and Panorama
monitors the behavior of the component under analysis, as well as the rest of the
system with regard to this data. These inputs include, among others, passwords,
common text, and network traffic. All the test cases are designed to feed the data
as input to known benign processes, such as a text editor or form fields of a web
page. In many cases, there is little reason for a component to access this data at
all.

The authors introduce three policies that are evaluated on the taint graph to
determine whether the analyzed sample behaves maliciously.

(1) Anomalous information access behavior defines that an analyzed component
should not touch labeled data at all (e.g., login passwords).

(2) Anomalous information leakage behavior. While a browser plug-in that accesses
the URLs a user is surfing to, is not malicious by itself, the leakage of this
information (e.g., to disk or to a network connection) clearly manifests malicious
behavior.

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 39

(3) Excessive information access behavior. Rootkits that hide files exhibit this
behavior since they have to check and sanitize file and directory listings every
time such a listing is requested.

6. MALWARE CLUSTERING – BEYOND PLAIN ANALYSIS

The previous section presented existing dynamic analysis tools that create reports
of the analyzed sample. Such systems are necessary tools for malware analysts
to grasp an insight into malware behavior. However, the sheer number of new
malware samples that reach anti-virus vendors every day, require further automated
approaches to limit the number of samples that require human analysis. Therefore,
different approaches have been proposed to classify unknown samples into either
known malware families or highlight those samples that exhibit unseen behavior
and thus suggest closer human analysis. This section gives an overview of the
proposed approaches that can be used to perform this classification.

6.1 Malware Clustering based on Anubis

As a response to the thousands of malware samples an anti-malware company re-
ceives every day, Bayer et al. [2009] introduced a system that is able to effectively
and automatically cluster large sets of malicious binaries based on their behavior.
By comparing malware behaviors, an analyst can focus on new threats and limit
the time that is invested in samples that exhibit already known behavior.

The proposed technique relies on Anubis to generate execution traces of all the
samples. Furthermore, Anubis was extended with taint propagation capabilities,
to make use of additional information sources. If a malware sample, for example,
creates a file whose file-name is dependent on the current system date, this de-
pendence is recognized by the system. In addition, taint propagation provides the
capabilities to detect characteristics such as reading a process’s own executable and
transmitting it over the network, as commonly exhibited by worms. Finally, the
set of control flow decisions that depend on tainted data is recorded as well.

Once the execution traces, augmented with the taint information, are created,
a behavioral profile is extracted for each trace. The information available from
the traces is interpreted in an object-centric way. The profile consists of operating
system objects (e.g., files, processes, etc.) and corresponding operations (e.g., read,
write, create, etc.). Compared to the sequence of system calls that is stored in the
execution traces, this representation is semantically richer and therefore enables
the system to unify semantically equivalent behavior better. For example, reading
256 bytes at once from a file is semantically equivalent to reading one byte, 256
times. However, the representation in the execution trace is considerably different.
During creation of the behavioral profiles, the information recorded through taint
propagation is used to describe if objects depend on each other as described above.

The inferred behavioral profiles are used as input for a clustering algorithm that
combines profiles that describe similar behavior into coherent clusters. To demon-
strate the scalability of their approach, the authors evaluated their tool on a set of
75,000 malware samples that were clustered within three hours.

ACM Computing Surveys, Vol. V, No. N, 20YY.

40 · M. Egele et al.

6.2 Behavioral Classification of Malware

Lee and Mody [2006] propose a system that divides a body of malicious software
samples into clusters by applying machine learning techniques on behavioral profiles
of the samples. The execution of these samples take place in a tightly controlled vir-
tual environment. A kernel-mode monitor records all system call invocations along
with their arguments. The retrieved information about a sample’s interaction with
the system is recorded into a behavioral profile. This profile consists of informa-
tion regarding the sample’s interaction with system resources such as writing files,
registry keys, or network activity. To measure the similarity between two profiles,
the edit distance is calculated between them, where the cost of a transformation is
defined in an operation cost matrix. The authors then apply a k-medoids clustering
approach to divide the body of malware samples into clusters that combine samples
with similar behavioral profiles.

Once training is complete, a new and unknown sample is assigned to the cluster
whose cluster medoid is closest to the sample (i.e., nearest neighbor).

6.3 Learning and Classification of Malware Behavior

Packer programs make it easy for attackers to create a plethora of malware instances
that cannot be matched by classical signature-based anti-virus products. Thus, it
is important to find other means of classifying an unknown malware sample. To
this end, Rieck et al. [2008] present a system that uses the behavioral information
contained in the analysis reports produced by CWSandbox (see Section 5.3). First,
behavioral profiles of each known malware family are extracted. Second, machine
learning techniques are applied to derive classifiers from these profiles allowing for
grouping malware instances that share similar behavior.

To support this, the authors run a commercial anti-virus scanner on a large body
of collected malware samples to obtain labels for the individual samples. For the
samples that could be identified, these labels correspond to the families the samples
belong to. Based on these labels and the behavioral profiles extracted from the
CWSandbox reports, the authors trained support vector machines (SVM) to build
classifiers for the individual families. A given SVM only states the probability with
which the analyzed sample belongs to a family. The system might be confronted
with samples that do not belong to any known families or exhibit behaviors that are
characteristic for multiple families. The decision process is structured such that it
results in exactly one family the sample belongs to. If the sample exhibits behaviors
from more than one family or none at all the sample is classified as unknown, which
suggests closer manual inspection.

7. CORRELATING TECHNIQUES AND TOOLS

This section illustrates which of the presented tools implement which of analysis
techniques introduced in Section 3. Table I, therefore, provides this correlation.
The numbers in parenthesis in the column headers refer to the the sections in
which the specific tool is discussed in detail, while the labels in the first column
denote support for a given analysis technique. The remainder of this section then
elaborates on the semantics of the individual features listed in the table.

Analysis implementation. The most distinguishing property of the mentioned

ACM Computing Surveys, Vol. V, No. N, 20YY.

A
S
u
rv

ey
o
n

A
u
to

m
a
ted

D
y
n
a
m

ic
M

a
lw

a
re

A
n
a
ly

sis
T
ech

n
iq

u
es

a
n
d

T
o
o
ls

·
4
1

A
n
u
b
is

(5
.1

)

M
u
lt
ip

a
th

ex
p
.

(5
.2

)

C
lu

st
er

in
g

(6
.1

)

C
W

S
a
n
d
b
ox

(5
.3

)

L
ea

rn
in

g
&

C
la

s.
(6

.3
)

N
o
rm

a
n

S
a
n
d
b
ox

(5
.4

)

J
o
eb

ox
(5

.5
)

E
th

er
(5

.6
)

W
iL

D
C

a
t

(5
.7

)

H
o
o
k
fi
n
d
er

(5
.8

)

J
u
st

in
(5

.9
.1

)

R
en

ov
o

(5
.9

.2
)

P
o
ly

U
n
p
a
ck

(5
.9

.3
)

O
m

n
iU

n
p
a
ck

(5
.9

.4
)

B
eh

av
.

S
p
y
w

.
(5

.1
0
.1

)

T
Q

a
n
a

(5
.1

0
.2

)

P
a
n
o
ra

m
a

(5
.1

0
.3

)

B
eh

av
.

C
la

s.
(6

.2
)

Analysis implementation

User-mode component ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • • • ◦ ◦ •

Kernel-mode component ◦ ◦ ◦ • • ◦ • ◦ • • • • ◦ • • ◦ • •

Virtual machine monitor ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Full system emulation • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • • ◦

Full system simulation ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Analysis targets

Single process • • • • • • • • • • • • • • • • ◦ •

Spawned processes • ◦ • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

All processes on a system ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •

Complete operating system ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦

Analysis support for

API calls • • • • • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • •

System calls • • • • • • • • ◦ • ◦ ◦ ◦ • • • • •

Function parameters • • • • • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • •

File system operations • • • • • • • ◦ ◦ • ◦ ◦ ◦ • • • • •

Process/thread creation • • • • • • • ◦ ◦ • ◦ ◦ ◦ ◦ • • • •

Registry operations • • • • • • • ◦ ◦ • ◦ ◦ ◦ • • • • •

COM components ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Detecting dyn. generated code ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦

Restoring packed binaries ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦

W ⊕ X page protection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦

Multiple layers of packers ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦

Signature matching after unpacking ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦

Instruction trace ◦ • • ◦ ◦ ◦ ◦ • • • ◦ • • ◦ ◦ ◦ • ◦

Information flow tracking ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦

Multiple path exploration ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

ASEP monitoring ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Networking support

Simulated network services ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Internet access (filtered) • • • • • • • • • • • • • ◦ • • • •

Performs cloaking

Shadow EFLAGS register ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Process hiding ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Dynamic module hiding ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Disguise modified memory pages ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦

Disguise elapsed time ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Clustering Support ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Simulated User Interaction ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦

Table I. Comparison of General Malware Analysis Tools

A
C

M
C

o
m

p
u
tin

g
S
u
rv

e
y
s,

V
o
l.

V
,
N

o
.
N

,
2
0
Y

Y
.

42 · M. Egele et al.

tools is on what privilege level the analysis is performed in comparison with the
privilege level of the analyzed sample. Anubis, Ether, TQana, and Panorama are
implemented in an emulator or a virtual machine. Thus, these analysis engines
run by definition in higher privilege levels as the analysis subject. However, each of
these tools has to bridge the already mentioned semantic gap between the hardware
level view of the analysis engine and the guest operating system.

The tools that employ components that are executed on the same system as the
analyzed sample, in contrast, can easily access all required high level information.
Yet, these systems do implement precaution mechanisms implemented in kernel-
mode to avoid being detected by the samples they analyze. Inherently, this prevents
these systems from effectively analyzing suspicious samples that contain kernel-
mode components.

Analysis targets. Anubis, CWSandbox, and Panorama use Windows XP (SP2)
as the guest operating system to execute the samples. No other operating system
is currently supported. CWSandbox is designed to work with any OS of the Win32
family (Windows 2000, XP, and Vista). Joebox executes and analyzes the malicious
sample in Windows Vista. We could not find any information regarding the Win-
dows version the Norman Sandbox simulates to the malware sample. Ether can be
used with any operating system that executes as a Xen guest. However, monitoring
system calls and analyzing their parameters is only available for Windows XP guest
systems.

System Calls and Windows API. All tools implement the monitoring of system
call invocations. Operating system agnostic approaches, such as Ether, do not hook
the Windows API since they lack the necessary information where, or more precisely
at what memory addresses, the API functions reside. However, by adding support
for VM introspection techniques as proposed by Garfinkel and Rosenblum [2003],
Ether could gain these capabilities as well. WiLDCAT has no built in support
for hooking system calls, but setting a breakpoint at the beginning of the relevant
functions allows the analyst to monitor their execution. The same approach can be
applied to monitor Windows API calls.

Function Call Parameters. Most of the surveyed tools analyze the parameters
passed to the monitored functions and relate that information where appropriate.
For example, an open-write-close sequence involving a single file can be represented
as a related action. Since parameter type and count of a given API might differ
between operating system versions, there is no built-in support for this approach in
WiLDCAT or Ether. Again, VM introspection could be used to add this analysis
technique to Ether.

Information Flow Tracking. Anubis, more specifically the multi-path and clus-
tering extensions, Panorama, Hookfinder, and TQana all perform information flow
tracking. Panorama and TQana use this information to detect undesired leakage of
sensitive information. Hookfinder uses the taint information to identify the tech-
niques a malware sample applied to hook itself into the system. Anubis, on the
other hand, uses these analysis results to perform behavioral clustering on malware
samples.

Packed Binaries. All four systems that are intended to unpack packed binaries
are able to detect dynamically generated code. However, PolyUnpack is the only

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 43

system that does not rely on the W ⊕ X page protection algorithm. Furthermore,
only Renovo supports the binaries that are recursively packed with different packer
programs. Justin, as well as OmniUnpack are designed to perform a signature
based anti-virus scan once the original binary is restored.

Network Simulation. Standard network management techniques, such as network
address translation, traffic shaping, or rate limiting can be enforced on all analysis
systems. Anubis, for example redirects all outgoing SMTP connections to a real
mail server that is configured to only store the spam mails for later analysis. That
is, the mails are not delivered to their intended recipients and thus the system does
not contribute to spam campaigns when analyzing spam bots. Furthermore, Anubis
rate limits all outgoing connections to prevent analyzed malware from participating
in DOS attacks.

Norman Sandbox contains built-in simulated network services for email and file
servers. All requests from the analyzed malware for such services are redirected
to these simulated components. Furthermore, an analyzed sample is allowed to
download files from the Internet (e.g., additional malware or updates). However,
the transfer is performed by the underlying OS and the result is forwarded to the
analyzed sample. All other access to the Internet is blocked.

Cloaking Techniques. Systems running on the same privilege level as the analyzed
malware apply different levels of cloaking techniques to hide themselves from the
sample under analysis. WiLDCAT implements a plethora of hiding techniques
to cover the modifications it has performed on the system. It keeps a shadow
copy of the trap flag in the EFLAGS register, as well as disguises its changes to
the page protection settings. Furthermore, a clock patch is applied to disguise
the difference between the elapsed wall clock time and the elapsed analysis time.
Joebox, as well as CWSandbox, employ rootkit techniques to hide their presence
from the analyzed malware. To this end, they contain a kernel-mode component
that filters the results of system and API calls that might reveal their presence (e.g.,
filtering the list of running processes, or loaded modules). In addition, Joebox uses
a cloaking technique to disguise the modifications on the malware binary code to
thwart detection by self checking malware samples.

Clustering Support. Anubis as well as CWSandbox has been used to provide
the behavioral profiles that are necessary to implement behavioral clustering of
malware. Furthermore, the system presented in Section 6.2 also performs clustering
of malware samples.

Simulated User Interaction. Panorama and TQana are designed to detect the
leakage of sensitive information. Therefore, these systems need to provide such
information (i.e., simulated user input) as stimuli to possible spyware components
that are analyzed. Joebox also implements this to thwart evasion attempts of
malware that stays dormant in the case of no user interaction.

8. CONCLUSION

Before developing countermeasures against malicious software, it is important to
understand how malware behaves and what evasion techniques it might implement.
This article presented a comprehensive overview of the state of the art analysis

ACM Computing Surveys, Vol. V, No. N, 20YY.

44 · M. Egele et al.

techniques as well as the tools that aid an analyst to quickly and in detail gain the
required knowledge of a malware instance’s behavior.

Ever evolving evasion techniques (e.g., self modifying code) employed by mali-
cious software to thwart static analysis, led to the development of dynamic analysis
tools. Dynamic analysis refers to the process of executing a malicious sample, and
monitoring its behavior. Most dynamic analysis tools implement functionality that
monitors which APIs are called by the sample under analysis, or which system calls
are invoked. Invocations of APIs and system calls by software are necessary in
order to interact with its environment. Analyzing the parameters passed to these
API and system functions allows multiple function calls to be grouped semanti-
cally. Furthermore, several analysis tools provide the functionality to observe how
sensitive data is processed and propagated in the system. This information serves
as a clue to an analyst and helps understand what kind of data is processed by a
malware sample. As a result, an analyst can identify actions that are performed to
fulfil a samples’ nefarious tasks.

Automated dynamic analysis results in a report that describes the observed ac-
tions that the malware has performed while under analysis. These reports can be
compiled into behavioral profiles that can be clustered in order to combine samples
with similar behavioral patterns into coherent groups (i.e., families). Furthermore,
this information can be used to decide which new malware samples should be given
priority for thorough analysis (i.e., manual inspection). In order to achieve this,
behavioral profiles of new threats can be automatically created by an analysis tool,
and compared with the clusters. While samples with behavioral profiles near an
existing cluster probably are a variation of the corresponding family, profiles that
considerably deviate from all clusters likely pose a new threat that is worth being
analyzed in detail. This prioritization has become necessary since techniques such
as polymorphic encodings or packed binaries allow attackers to release hundreds of
new malware instances every day. Although such samples might evade static sig-
nature matching, their similar behavior observed through dynamic analysis, might
reveal their affiliation with a given malware family.

The information an analyst gains from these analysis tools allow her to have a
clear understanding of a malware instance’s behavior, and, thus, lays the foundation
for implementing countermeasures in a timely and appropriate manner.

ACKNOWLEDGMENTS

This work has been supported by the European Commission through project FP7-
ICT-216026-WOMBAT, by FIT-IT through the SECoverer project, and by Secure
Business Austria.

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 45

REFERENCES

Anubis. Analysis of unknown binaries. http://anubis.iseclab.org. Last accessed, May 2010.

Avira Press Center. 2007. Avira warns: targeted malware attacks increasingly also
threatening German companies. http://www.avira.com/en/security news/targeted attacks

threatening companies.html. Last accessed, May 2010.

Backes, M., Kopf, B., and Rybalchenko, A. 2009. Automatic discovery and quantification of
information leaks. In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy.
IEEE Computer Society, Washington, DC, USA, 141–153.

Baecher, P. and Koetter, M. x86 shellcode detection and emulation. http://libemu.

mwcollect.org/. Last accessed, May 2010.

Bayer, U., Milani Comparetti, P., Hlauschek, C., Krügel, C., and Kirda, E. 2009. Scalable,
Behavior-Based Malware Clustering. In 16th Annual Network and Distributed System Security
Symposium (NDSS09).

Bayer, U., Moser, A., Krügel, C., and Kirda, E. 2006. Dynamic analysis of malicious code.
Journal in Computer Virology 2, 1, 67–77.

Bellard, F. 2005. QEMU, a Fast and Portable Dynamic Translator. In FREENIX Track of the
USENIX Annual Technical Conference.

Bennett, J. AutoIt Script Home Page. http://www.autoitscript.com/. Last accessed, May

2010.

Bochs. Bochs: The open source IA-32 emulation project. http://bochs.sourceforge.net/. Last
accessed, May 2010.

Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Poosankam, P., Song, D., and Yin, H.
2007. Automatically identifying trigger-based behavior in malware. In Book chapter in ”Botnet
Analysis and Defense”, Editors Wenke Lee et. al.

Buehlmann, S. and Liebchen, C. Joebox: a secure sandbox application for Windows to analyse
the behaviour of malware. http://www.joebox.org/. Last accessed, May 2010.

Cacheda, F. and Viña, Á. 2001. Experiencies retrieving information in the World Wide Web. In
Proceedings of the Sixth IEEE Symposium on Computers and Communications (ISCC 2001).
IEEE Computer Society, 72–79.

Carrier, B. The sleuth kit. http://www.sleuthkit.org/sleuthkit/. Last accessed, May 2010.

Cavallaro, L., Saxena, P., and Sekar, R. 2008. On the limits of information flow techniques for
malware analysis and containment. In Detection of Intrusions and Malware, and Vulnerability
Assessment, 5th International Conference (DIMVA). 143–163.

Chen, H., Dean, D., and Wagner, D. 2004. Model Checking One Million Lines of C Code. In
11th Annual Network and Distributed System Security Symposium (NDSS04).

Chen, H. and Wagner, D. 2002. MOPS: an infrastructure for examining security properties of
software. In Proceedings of the 9th ACM conference on Computer and communications security
(CCS). 235 – 244.

Chen, X., Andersen, J., Mao, Z., Bailey, M., and Nazario, J. 2008. Towards an understanding
of anti-virtualization and anti-debugging behavior in modern malware. In IEEE International
Conference on Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008.
177–186.

Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., and Rosenblum, M. 2004. Understand-
ing data lifetime via whole system simulation. In Proceedings of the 13th USENIX Security
Symposium.

Christodorescu, M., Jha, S., and Kruegel, C. 2007. Mining specifications of malicious behav-
ior. In Proceedings of the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of Software Engineering.
5–14.

Crandall, J. R. and Chong, F. T. 2004. Minos: Control data attack prevention orthogonal to
memory model. In 37th International Symposium on Microarchitecture.

Dan Goodin (The Register). 2008. SQL injection taints BusinessWeek.com. http://www.

theregister.co.uk/2008/09/16/businessweek hacked/. Last accessed, May 2010.

ACM Computing Surveys, Vol. V, No. N, 20YY.

46 · M. Egele et al.

Daniel, M., Honoroff, J., and Miller, C. 2008. Engineering heap overflow exploits with

javascript. In 2nd USENIX Workshop on Offensive Technologies (WOOT08).

Daniloff, I. 1997. Virus analysis 3, fighting talk. Virus Bulletin Journal, The international
publication on computer virus prevention, recognition and removal , 10 – 12.

Dinaburg, A., Royal, P., Sharif, M. I., and Lee, W. 2008. Ether: malware analysis via hardware
virtualization extensions. In ACM Conference on Computer and Communications Security
(CCS). 51–62.

Egele, M., Kruegel, C., Kirda, E., Yin, H., and Song, D. X. 2007. Dynamic spyware analysis.
In Proceedings of the 2007 USENIX Annual Technical Conference. 233–246.

Egele, M., Szydlowski, M., Kirda, E., and Krügel, C. 2006. Using static program analysis
to aid intrusion detection. In Proceedings of the 3rd International Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA). 17–36.

Falliere, N. 2007. Windows anti-debug reference. http://www.symantec.com/connect/es/

articles/windows-anti-debug-reference. Last accessed, May 2010.

Feng, H. H., Giffin, J. T., Huang, Y., Jha, S., Lee, W., and Miller, B. P. 2004. Formalizing
sensitivity in static analysis for intrusion detection. In IEEE Symposium on Security and
Privacy. 194 – 208.

Ferrie, P. 2007. Attacks on virtual machine emulators. www.symantec.com/avcenter/reference/
Virtual Machine Threats.pdf. Last accessed, May 2010.

Fossi, M., Johnson, E., Mack, T., Turner, D., Blackbird, J., Low, M. K., Adams, T.,
McKinney, D., Entwisle, S., Laucht, M. P., Wueest, C., Wood, P., Bleaken, D., Ahmad,
G., Kemp, D., and Samnani, A. 2009. Symantec global Internet security threat report trends
for 2008. http://www4.symantec.com/Vrt/wl?tu id=gCGG123913789453640802. Last accessed,
May 2010.

Free Software Foundation. Code Gen Options - Using the GNU Compiler Col-
lection (GCC). http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Code-Gen-Options.html#

Code-Gen-Options. Last accessed, January 2010.

FRISK Software International. 2003. F-prot virus signature updates cause false alarm in Win-
dows 98. http://www.f-prot.com/news/vir alert/falsepos invictus.html. Last accessed,
May 2010.

Garfinkel, T., Adams, K., Warfield, A., and Franklin, J. 2007. Compatibility is Not Trans-
parency: VMM Detection Myths and Realities. In Proceedings of the 11th Workshop on Hot
Topics in Operating Systems (HotOS-XI).

Garfinkel, T. and Rosenblum, M. 2003. A virtual machine introspection based architecture
for intrusion detection. In 10th Annual Network and Distributed System Security Symposium
(NDSS03).

Goldberg, R. P. 1974. Survey of virtual machine research. IEEE Computer Magazine June, 1974
(June), 34–45.

Guo, F., Ferrie, P., and Tzi-cker Chiueh. 2008. A Study of the Packer Problem and Its Solu-
tions. In 11th International Symposium On Recent Advances In Intrusion Detection (RAID).

Haldar, V., Chandra, D., and Franz, M. 2005. Dynamic taint propagation for Java. In 21st
Annual Computer Security Applications Conference (ACSAC). 303–311.

Hunt, G. and Brubacher, D. 1999. Detours: binary interception of Win32 functions. In 3rd
USENIX Windows NT Symposium. USENIX Association, Berkeley, CA, USA, 135–143.

Inoue, D., Yoshioka, K., Eto, M., Hoshizawa, Y., and Nakao, K. 2008. Malware behav-
ior analysis in isolated miniature network for revealing malware’s network activity. In IEEE

International Conference on Communications (ICC).

Jansen, B. J. and Spink, A. 2005. An analysis of web searching by european AlltheWeb.com
users. Information Processing and Management 41, 2, 361–381.

John Leyden (The Register). 2007. Kaspersky false alarm quarantines Windows Ex-
plorer. http://www.channelregister.co.uk/2007/12/20/kaspersky false alarm/. Last ac-
cessed, May 2010.

Juzt-Reboot Technology. Juzt-reboot, intelligent back-up technology, instant recovery. http:
//www.juzt-reboot.com/. Last accessed, May 2010.

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 47

Kang, M. G., Poosankam, P., and Yin, H. 2007. Renovo: a hidden code extractor for packed

executables. In WORM ’07: Proceedings of the 2007 ACM workshop on Recurring malcode.
ACM, New York, NY, USA, 46–53.

Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G. M., Paxson, V., and
Savage, S. 2008. Spamalytics: an empirical analysis of spam marketing conversion. In ACM
Conference on Computer and Communications Security (CCS). 3–14.

Kim, H. C., Keromytis, A. D., Covington, M., and Sahita, R. 2009. Capturing information flow
with concatenated dynamic taint analysis. International Conference on Availability, Reliability
and Security , 355–362.

King, S. T., Chen, P. M., Wang, Y.-M., Verbowski, C., Wang, H. J., and Lorch, J. R. 2006.
Subvirt: Implementing malware with virtual machines. In IEEE Symposium on Security and
Privacy. 314–327.

Kirda, E., Kruegel, C., Banks, G., Vigna, G., and Kemmerer, R. A. 2006. Behavior-based
spyware detection. In Proceedings of the 15th USENIX Security Symposium.

Labir, E. 2005. Vx reversing III yellow fever (Griyo 29a). CodeBreakers Journal Vol. 2, No. 1 .
Last accessed, May 2010.

Lau, B. and Svajcer, V. 2008. Measuring virtual machine detection in malware using DSD
tracer. Journal in Computer Virology .

Lee, T. and Mody, J. J. 2006. Behavioral classification. In European Institute for Computer
Antivirus Research Conference (EICAR).

Liguori, A. 2010. Qemu snapshot mode. http://wiki.qemu.org/Manual. Last accessed, May
2010.

Marcus, D., Greve, P., Masiello, S., and Scharoun, D. 2009. Mcafee threats report: Third
quarter 2009. http://www.mcafee.com/us/local content/reports/7315rpt threat 1009.pdf.
Last accessed, May 2010.

Martignoni, L., Christodorescu, M., and Jha, S. 2007. Omniunpack: Fast, generic, and safe
unpacking of malware. In 23rd Annual Computer Security Applications Conference (ACSAC).
IEEE Computer Society, 431–441.

Mehta, N. and Clowes, S. 2003. Shiva. advances in ELF binary runtime encryption. http:

//www.securereality.com.au/. Last accessed, May 2010.

Microsoft Corporation. 2006. Microsoft Security Bulletin MS06-014 - Vulnerability in the
Microsoft Data Access Components (MDAC) Function Could Allow Code Execution. http:

//www.microsoft.com/technet/security/Bulletin/MS06-014.mspx. Last accessed, May 2010.

Microsoft Corporation. 2008. Microsoft Security Bulletin MS08-067 Critical; Vulnerability
in Server Service Could Allow Remote Code Execution. http://www.microsoft.com/technet/

security/Bulletin/MS08-067.mspx. Last accessed, May 2010.

Moore, D., Shannon, C., and Claffy, K. C. 2002. Code-Red: a case study on the spread and
victims of an Internet worm. In Internet Measurement Workshop. 273–284.

Moser, A., Kruegel, C., and Kirda, E. 2007a. Exploring Multiple Execution Paths for Malware
Analysis. In IEEE Symposium on Security and Privacy, Oakland.

Moser, A., Kruegel, C., and Kirda, E. 2007b. Limits of static analysis for malware detection.
In 23rd Annual Computer Security Applications Conference (ACSAC). 421–430.

Nair, S. K., Simpson, P. N. D., Crispo, B., and Tanenbaum, A. S. 2008. A virtual machine
based information flow control system for policy enforcement. Electron. Notes Theor. Comput.
Sci. 197, 1, 3–16.

Nanda, S., Lam, L.-C., and Chiueh, T.-c. 2007. Dynamic multi-process information flow tracking
for web application security. In Proceedings of the 2007 ACM/IFIP/USENIX international
conference on Middleware companion (MC ’07). ACM, New York, NY, USA, 1–20.

Nebbett, G. 2000. Windows NT/2000 Native API Reference. New Riders Publishing, Thousand
Oaks, CA, USA.

Newsome, J. and Song, D. X. 2005. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In 12th Annual Network and
Distributed System Security Symposium (NDSS05).

ACM Computing Surveys, Vol. V, No. N, 20YY.

48 · M. Egele et al.

Norman Sandbox 2003. Norman SandBox Whitepaper. http://download.norman.no/

whitepapers/whitepaper Norman SandBox.pdf. Last accessed, May 2010.

PEiD. PEiD: Packer Identification. http://www.peid.info/. Last accessed, May 2010.

Perl Taint. Perl security / taint mode. http://perldoc.perl.org/perlsec.html#Taint-mode.
Last accessed, May 2010.

Portokalidis, G., Slowinska, A., and Bos, H. 2006. Argos: an emulator for fingerprinting
zero-day attacks for advertised honeypots with automatic signature generation. In Proceedings
of the 2006 EuroSys Conference. 15–27.

Provos, N., Mavrommatis, P., Rajab, M. A., and Monrose, F. 2008. All your iFRAMEs point
to us. In Proceedings of the 17th USENIX Security Symposium.

Provos, N., McNamee, D., Mavrommatis, P., Wang, K., and Modadugu, N. 2007. The
Ghost In The Browser: Analysis of Web-based Malware. In First Workshop on Hot Topics in
Understanding Botnets (HotBots ’07).

Raffetseder, T., Krügel, C., and Kirda, E. 2007. Detecting system emulators. In 10th
International Conference on Information Security (ISC). 1–18.

Rieck, K., Holz, T., Willems, C., Düssel, P., and Laskov, P. 2008. Learning and classification
of malware behavior. In Detection of Intrusions and Malware, and Vulnerability Assessment,
5th International Conference (DIMVA). 108–125.

Royal, P., Halpin, M., Dagon, D., Edmonds, R., and Lee, W. 2006. Polyunpack: Automating
the hidden-code extraction of unpack-executing malware. In 22nd Annual Computer Security
Applications Conference (ACSAC). 289–300.

Rutkowska, J. 2004. Red Pill... or how to detect VMM using (almost) one CPU instruction.
http://www.invisiblethings.org/papers/redpill.html. Last accessed, May 2010.

Rutkowska, J. 2006. Introducing Blue Pill. http://theinvisiblethings.blogspot.com/2006/

06/introducing-blue-pill.html. Last accessed, May 2010.

Sharif, M., Lanzi, A., Giffin, J., and Lee, W. 2008. Impeding malware analysis using condi-
tional code obfuscation. In 15th Annual Network and Distributed System Security Symposium
(NDSS08).

Skoudis, E. and Zeltser, L. 2003. Malware: Fighting Malicious Code. Prentice Hall PTR,
Upper Saddle River, NJ, USA.

Slowinska, A. and Bos, H. 2009. Pointless tainting?: evaluating the practicality of pointer taint-

ing. In Proceedings of the fourth ACM European conference on Computer systems (EuroSys).
ACM, New York, NY, USA, 61–74.

Sotirov, A. Heap feng shui in javascript. http://www.phreedom.org/research/heap-feng-shui/
heap-feng-shui.html. Last accessed, May 2010.

Spafford, E. H. 1989. The Internet worm incident. In Proceedings of the 2nd European Software
Engineering Conference. 446–468.

Stasiukonis, S. 2007. Social engineering, the USB way. http://www.darkreading.com/security/
perimeter/showArticle.jhtml?articleID=208803634. Last accessed, May 2010.

Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R. A.,
Kruegel, C., and Vigna, G. 2009. Your botnet is my botnet: analysis of a botnet takeover.
In ACM Conference on Computer and Communications Security (CCS). 635–647.

Szor, P. 2005. The Art of Computer Virus Research and Defense. Addison-Wesley Professional.

Taha, G. 2007. Counterattacking the packers. http://www.mcafee.com/us/local content/

white papers/threat center/wp counterattacking packers.pdf. Last accessed, May 2010.

Tanachaiwiwat, S. and Helmy, A. 2006. Vaccine: War of the worms in wired and wireless
networks. In IEEE Infocom 2006, Poster.

Vasudevan, A. and Yerraballi, R. 2004. Sakthi: A retargetable dynamic framework for binary
instrumentation. In Hawaii International Conference in Computer Sciences.

Vasudevan, A. and Yerraballi, R. 2005. Stealth breakpoints. In 21st Annual Computer
Security Applications Conference (ACSAC). 381–392.

Vasudevan, A. and Yerraballi, R. 2006a. Cobra: Fine-grained malware analysis using stealth
localized-executions. In IEEE Symposium on Security and Privacy. 264–279.

ACM Computing Surveys, Vol. V, No. N, 20YY.

A Survey on Automated Dynamic Malware Analysis Techniques and Tools · 49

Vasudevan, A. and Yerraballi, R. 2006b. Spike: engineering malware analysis tools using

unobtrusive binary-instrumentation. In Proceedings of the 29th Australasian Computer Science
Conference. 311–320.

Venkataramani, G., Doudalis, I., Solihin, Y., and Prvulovic, M. 2008. Flexitaint: A pro-
grammable accelerator for dynamic taint propagation. In High Performance Computer Archi-
tecture, 2008. HPCA 2008. IEEE 14th International Symposium on. 173–184.

VMWare snapshots. VMWare using snapshots. http://www.vmware.com/support/ws55/doc/ws

preserve using sshot.html. Last accessed, May 2010.

Vogt, P., Nentwich, F., Jovanovic, N., Kruegel, C., Kirda, E., and Vigna, G. 2007. Cross
site scripting prevention with dynamic data tainting and static analysis. In 14th Annual Net-
work and Distributed System Security Symposium (NDSS 2007).

Wang, Y.-M., Roussev, R., Verbowski, C., Johnson, A., Wu, M.-W., Huang, Y., and Kuo,
S.-Y. 2004. Gatekeeper: Monitoring auto-start extensibility points (ASEPs) for spyware man-
agement. In LISA ’04: Proceedings of the 18th USENIX conference on System administration.
USENIX Association, Berkeley, CA, USA, 33–46.

Willems, C., Holz, T., and Freiling, F. 2007. Toward automated dynamic malware analysis
using CWSandbox. IEEE Security and Privacy 5, 2, 32–39.

Xu, J., Sung, A. H., Chavez, P., and Mukkamala, S. 2004. Polymorphic malicious executable
scanner by api sequence analysis. In 4th International Conference on Hybrid Intelligent Sys-
tems. 378–383.

Yan, W., Zhang, Z., and Ansari, N. 2008. Revealing Packed Malware. IEEE, Security and
Privacy 6, 5, 65 – 69.

Yin, H., Song, D. X., Egele, M., Kruegel, C., and Kirda, E. 2007. Panorama: capturing
system-wide information flow for malware detection and analysis. In ACM Conference on
Computer and Communications Security (CCS). 116–127.

Zeltser, L. 2006. Virtual machine detection in malware via commercial tools. http://isc.sans.
org/diary.html?storyid=1871. Last accessed, May 2010.

Zhuge, J., Holz, T., Song, C., Guo, J., Han, X., and Zou, W. 2008. Studying malicious
websites and the underground economy on the Chinese web. In 7th Workshop on Economics
of Information Security 2008.

Zovi, D. D. 2006. Hardware Virtualization Based Rootkits. in Black Hat Briefings and Training
USA 2006.

Received Month Year; revised Month Year; accepted Month Year

ACM Computing Surveys, Vol. V, No. N, 20YY.

