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Abstract After analyzing several Android mobile banking trojans, we
observed the presence of repetitive artifacts that describe valuable infor-
mation about the distribution of this class of malicious apps. Motivated
by the high threat level posed by mobile banking trojans and by the
lack of publicly available analysis and intelligence tools, we automated
the extraction of such artifacts and created a malware tracker named
DroydSeuss. DroydSeuss first processes applications both statically and
dynamically, extracting relevant strings that contain traces of commu-
nication endpoints. Second, it prioritizes the extracted strings based on
the APIs that manipulate them. Finally, DroydSeuss correlates the end-
points with descriptive metadata from the samples, providing aggregated
statistics, raw data, and cross-sample information that allow researchers
to pinpoint relevant groups of applications.
We connected DroydSeuss to the VirusTotal daily feed, consuming An-
droid samples that perform banking-trojan activity. We manually ana-
lyzed its output and found supporting evidence to confirm its correctness.
Remarkably, the most frequent itemset unveiled a campaign currently
spreading against Chinese and Korean bank customers.
Although motivated by mobile banking trojans, DroydSeuss can be used
to analyze the communication behavior of any suspicious application.

1 Introduction
With the widespread use of mobile devices as a second factor of authentication,
malware authors equipped their banking trojans (e.g., ZeuS, SpyEye, Carberp, and
derivatives), to leverage dedicated companion mobile malware trojan apps. With
apps known in the underground as ZitMo, SpitMo, and CitMo, attackers create
a man-in-the-middle between the banking website and the victim, effectively
bypassing two factor authentication.

Cyber criminals strive to streamline the generation and distribution of mobile
bankers as much as possible, using so-called crimeware kits, in order to reach
large pools of victims. However, the more a cyber gang needs to automate
their operations, the more likely their “dev ops” will leave traces that allow
to identify groups of related apps. To our knowledge, however, most of the
analysts’ work is still done manually. Moreover, there is no mobile equivalent
of the ZeuS Tracker [1], which turns out to be extremely useful to security



and malware researchers. Motivated by this, we created the DroydSeuss mobile
malware tracker.

Our work is inspired by observations made during manual reverse engineering
efforts. First, traces of C&C endpoints (e.g., phone number, domain name,
URL) are typically visible in (byte)code, at runtime, or both, depending on
the sophistication of the sample. Generally, finding both static and dynamic
evidence of the same endpoint is a good indicator that the sample supports
some configuration mechanism, which may reveal that it was generated semi-
automatically (e.g., by a crimeware kit). Second, certain static features of the
malicious app (e.g., prefixes of package name) that recur frequently, together
with the same C&C endpoints is a further indicator that the malicious sample
may be part of a campaign.

DroydSeuss runs each malware sample in an instrumented environment to
track statically and dynamically allocated strings that are likely to be C&C
endpoints. DroydSeuss has prioritization heuristics that assign an increasing level
of importance to the candidate endpoints. In addition, DroydSeuss analyzes the
itemsets containing (1) the extracted endpoints and (2) descriptive metadata
from the samples (e.g., prefix of the package name). The outcome is a rank of
itemsets that provide succinct insights such as package name X is almost always
related to phone-based C&C endpoints in country Y.

We manually inspected the top 10 most frequent itemsets of each endpoint
type (i.e., web and phone-based) and in all cases except one, we found contextual
evidence from online resources that backed our findings. Interestingly, the left-out
case led us to a very active, mobile-only banking trojan campaign targeting
Korean and Chinese customers, of which no public evidence was available so far.

In summary, our work makes the following contributions:

– We propose a simple but effective pattern-elicitation technique based on fre-
quent itemset mining which unveils growing campaigns and allows researchers
to pin-point relevant groups of samples.

– We design and implement the first mobile malware tracker that leverages fre-
quent itemset mining, along with classic static- and dynamic-data extraction
techniques, to track phone- and web-based C&C endpoints.

– We release our tracker to the public at http://droydseuss.com where it has
been running since October 2014; during this time frame, it correctly brought
to our attention groups of trojans that would otherwise have required manual
analysis in order to understand their importance.

2 DroydSeuss’ Approach
The rationale behind DroydSeuss is twofold. First, evidence of interesting C&C
endpoints can appear statically, dynamically, or both, depending on the sophisti-
cation of the sample. Second, metadata that recur frequently together with the
same C&C endpoint indicates that there may be a crimeware kit or a campaign
involved.

The remainder of this section describes how we implemented the aforemen-
tioned rationale in order to elicit relevant information that helps the analyst

http://droydseuss.com
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Figure 1: Data processing pipeline of DroydSeuss.

finding interesting groups of samples and, possibly, campaigns, starting from
a feed of malicious apps. Figure 1 summarizes how Phase 1 and Phase 2
implement the first rationale, whereas Phase 3 implements the second rationale.

2.1 Phase 1: Data Extraction

We are interested in capturing two categories of C&C endpoints: web based ones
(e.g., IPs, URLs) and phone based ones. In addition, we also track recent trojans
that take advantage of the Google Cloud Messaging (GCM) system [8] for push
communication. While regular expressions for domain names, URLs and IPs are
rather easy to write, parsing phone numbers is not straightforward. For this, we
used the Python port of the libphonenumber library.

Static Data. As a preliminary step, we use apktool to unpack the APK archives,
disassemble the Dalvik bytecode into an ASCII representation of the Smali
assembly code and extract the manifest and resource files. Starting from static
resources and Smali assembly files, this sub-phase is implemented as a set of
regular expressions and post-processing scripts.

The following snippet, obtained from a real-world malicious APK, exemplifies
how phone numbers and URL paths are saved in resource files.

XML resource file found in an iBanking sample.

<resources>
<string name="def_tel_number">+43676800XXXX</string>
<string name="urlPostData">/iBanking/sms/index.php</string>
<string name="urlPostSms">/iBanking/sms/saveSMS.php</string>
<string name="urlCommand">/iBanking/sms/sync.php</string>
<string name="urlSmsList">/iBanking/getList.php</string>
<string name="urlSendFile">/iBanking/sendFile.php</string>
<string name="urlPing">/iBanking/sms/ping.php</string>

</resources>

Additionally, we parse Smali string constants denoted by the const-string

instruction and check whether the manifest declares the GCM permission. An
example of such string constant is shown in the following snippet.

C&C phone number declared in a malicious APK.

const-string v4, "+43676800XXXX"



Dynamic Data. In this sub-phase, we run the APK file in an instrumented
sandbox. For our proof-of-concept implementation of DroydSeuss we leverage
TraceDroid [20], which produces detailed, readable and easily parsable traces
with deserialized arguments and return values.

We are particularly interested in stimulating the typical behaviours involved
in botnet communication. To this end, TraceDroid triggers a number of special
events (e.g., device reboot, phone call, network disconnect, etcetera). Furthermore,
the sandbox launches all the activities and starts all the services declared in the
app manifest. Finally, it runs the Android UI Exerciser Monkey that generates
pseudo-random streams of user events such as clicks, touches and gestures.

The following listing shows an excerpt output resulting from the analysis of a
real banker. The sub-phase continues by applying a set of regular expressions on
the (string-typed) input arguments and return values of every API invocation to
capture potential endpoints.

TraceDroid output file

public java.lang.StringBuilder
java.lang.StringBuilder("http://dubleautoriza.net").append((java.lang.String)
"/iBanking/sms/ping.php")

return (java.lang.StringBuilder) "http://dubleautoriza.net/iBanking/sms/ping.php"
public java.lang.String

java.lang.StringBuilder("http://dubleautoriza.net/iBanking/sms/ping.php").toString()
return (java.lang.String) "http://dubleautoriza.net/iBanking/sms/ping.php"
new org.apache.http.client.methods.HttpPost((java.lang.String)

"http://dubleautoriza.net/iBanking/sms/ping.php")

The following APIs are processed in a special way because they are directly
connected with endpoint activity (see Section 2.2):

– SmsManager’s functions are interesting because they can be used to send text
messages to a specified number.

– URL.openConnection is interesting because it specifies an URL to connect
to. Also apache.* methods are tracked for the same purpose.

– GoogleCloudMessaging.register (and deprecated versions) are used for
GCM-related operations. We are interested in extracting the sender ID, which
uniquely identifies the server-side message sender.

2.2 Phase 2: Endpoint Ranking and Enrichment

In this phase, DroydSeuss ranks endpoints according to various heuristics. We
define three rank levels, in order from the least to the most important:

1. Suspicious, if an endpoint is matched only during static analysis.
2. Significant, if a web endpoint is matched during dynamic analysis, yet in

ancillary functions (e.g., string manipulation). This specific rank level allows
to reveal cases such as the concatenation of a domain name with the paths.

3. Important, if the endpoint is matched during dynamic analysis in an API
function which indicates that the malware has actually used the endpoint.

Additionally, we enrich extracted endpoints with the following details:

– Geolocalization. We use a free service [3] for IPs and the pycountry library
for phone numbers.

– Autonomous System. We associate the IPs to their respective autonomous
system using the Cymru service [4], which exposes a DNS-based API.



– Phone number type. Using libphonenumber, we determine whether the
phone number is a fixed line, mobile, fixed line or mobile, toll free, premium
rate, shared cost, VOIP, personal number, pager, UAN or voicemail.

2.3 Phase 3: Frequent Itemset Mining

In this phase, DroydSeuss implements our second rationale to elicit recurrent
relations between the endpoints ranked as C&C (highest rank level) and the
APK metadata. In principle, any metadata can be used but, based on the results
of previous work [13] and on our results, we concentrate on the package name.

We leverage a fast, simple but effective frequent itemset mining technique.
In essence, we count the occurrences of 〈endpoint feature, package name prefix〉
tuples, where endpoint feature ∈ {country,ASN,domain, IP} and package name
prefix is the shortest prefix with at least two elements (e.g., com.ann88.*) (from
hereinafter, for brevity, we use the terms package name and package name prefix
as synonyms). Finally, we count occurrences of each itemset in our dataset of
APKs, that is #〈e, p〉 ∀e, p, where e and p are the actual values of the endpoint
feature and package name. To obtain the frequency [11] φ of each itemset we
calculate:

φ〈e, p〉 = 2 · #〈e, p〉
#(p) + maxp #(p)

where #(p) is the number of APKs with that package name—we do not count
multiple occurrences of a package within the same APK. We normalize φ ∈ [0, 1]
by multiplying by a factor 2. Moreover, summing the count of the most frequent
package name maxp φ(p) gives more weight to really frequent packages and, on
the other hand, avoids assigning high frequencies to itemsets generated by only
few packages.

3 Experimental Results
Although providing a complete evaluation for an intelligence system that can
potentially produce novel knowledge is a difficult task, we want to obtain quanti-
tative and qualitative indicators about its performance, correctness and usefulness
for the analyst.

3.1 Dataset and Setup

For the purpose of this evaluation we used 4,293 samples of banking trojans,
downloaded nightly through the VirusTotal Intelligence API, that match the
following malware families: ZitMo, SpitMo, CitMo, iBanking and FakeBank.

As Figure 2 shows, DroydSeuss has been running for almost 12 months
since its release in late October 2014. Since January 10, we started monitoring
web-based endpoints by sending an HTTP HEAD request and keeping track of
whether they responded. On average, a little over 10% of the contacted endpoints
responded.

3.2 Experiment 1: False Positives

As the feed of samples includes only known malicious APKs, we expect a low
fraction of benign domains. This is important because the assumption behind
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Figure 2: Daily number of downloaded/processed samples (blue) and number of re-
sponding web-based endpoints (red).

any malware tracker is that the activity performed by the sample is malicious or
otherwise interesting for the malware analyst.

As of October 9, 2015, the fraction of benign domains in the feed of samples
tracked by DroydSeuss is minuscule, summarized in Table 1. We obtained these
numbers by using the Alexa Top 1M domain list [2] as a whitelist.

We manually analyzed the benign domains and found that the ones classified
as important were baidu.com and cl.ly. The sample contacting baidu.com was
using the following URL templates:

http://www.baidu.com/index.php?m=Api&a=SMSReceiver&imsi=CENSORED&number=

CENSORED&from=86279&content=CENSORED

Manual inspection of the sample confirmed that it was a data-stealing trojan that
sent stolen data encoded as baidu.com URLs. In a similar vein, cl.ly URLs
point to a legitimate file-hosting service, which is being used by the miscreants
to host malicious APKs. This may appear strange, but using existing, popular
services as the backend of a (mobile) botnet essentially creates a covert channel,
making it hard for the analysts to separate between legitimate and non-legitimate
traffic. In fact, although not prevalent, botnets that follow this approach have
recently appeared in the wild [7]. In conclusion, although whitelisting the known
benign domains is tempting, we believe that they should be reported to the
analyst, possibly marked in some way.

3.3 Experiment 2: Reality Check

Quantitatively evaluating the correctness of DroydSeuss with respect to known
benign endpoints is feasible, as discussed in the previous section. However, a
quantitative evaluation of the recall is an ill-defined question, simply because a
complete ground truth does not exist. If we had this ground truth, then there
would be no reason for DroydSeuss to exist.

We opted for a qualitative evaluation that we carried out by manually Googling
for endpoints which DroydSeuss assigned high rankings to and inspecting the

Table 1: Rate of benign (Alexa Top 1M) domain names found in the samples.

Important Significant Suspicious

Distinct 2/410 (0,48%) 8/597 (1,34%) 57/571 (9,98%)
Overall (distinct per sample) 2/1453 (0,13%) 109/3052 (3,57%) 277/12636 (2,19%)

http://www.baidu.com/index.php?m=Api&a=SMSReceiver&imsi=CENSORED&number=CENSORED&from=86279&content=CENSORED
http://www.baidu.com/index.php?m=Api&a=SMSReceiver&imsi=CENSORED&number=CENSORED&from=86279&content=CENSORED
cl.ly


search results. In addition, we used threat investigation channels such as private
mailing lists, CERTs, and other sources of contextual information that corroborate
the correctness of our findings.

Endpoints from Most Frequent Itemsets. We took the domain names of
the C&C appearing in the highest ranked itemsets (top 10) and searched for
evidence to support their relevance. Over the past year, *.vicp.co (78.96%),
smsgrabber.url.ph, y30icv.com and 124ffsaf.com are the most relevant ones.

The latter search key lead us to a Trusteer report [10] that confirmed that it
was indeed used to collect data stolen from SpyEye bots. smsgrabber.url.ph
was part of the C&C infrastructure used by the iBanking Malware in late 2014,
as confirmed by a technical report by F5 [16]. Interestingly, according to Google
Safe Browsing, *.y30icv.com is not engaged in any malicious activity, although
according to our analysis it is clearly pointing to C&C and APK-hosting server.

As we found no public reports about *.vicp.co, we extended our search
using PassiveTotal [5] and a private mailing list used by experts to exchange
fresh, threat-related information. It was found that we spotted an actively
spreading trojan campaign started in December 2014, targeting Korean and
Chinese customers. According to the intelligence information at our disposal and
to ZeuS Tracker, none of these subdomains were used for non-mobile malicious
purposes. In conclusion, the campaign that was brought to our attention, thanks
to the frequent itemset mining system of DroydSeuss, is a very relevant one
and seems to be exclusively targeting mobile customers. Our findings were later
confirmed by the NASK/CERT Polska.

Phone Numbers from Most Frequent Itemsets. Among the most frequent
itemsets we found numbers such as +467694XXXX, used as C&C in ZitMo cam-
paigns [19], +79252XXXX, included in a spyware kit [14] or +447781XXXX, used by
an iBanking campaign [12] and further confirmed by the NASK/CERT Polska.
A curious case is +49157061XXXX, a German number used as a C&C endpoint
by 20 samples. According to a (cached) WHOIS record, this phone number was
of the admin contact the kundencenter-accountservice.com domain name. A
further search revealed that the number was used in the past to host a PayPal
phishing campaign [18].

GCM Endpoints. Among the samples that used GCM endpoints (i.e., sender ID
738965552XXXX, a C&C server address 94.75.**.** and the respective domain
name), we found one blog post [6] and a project deliverable [9]. The blog post was
written by the AndroTotal group and required to manually reverse engineer the
samples and extract the concise relevant information extracted automatically by
DroydSeuss. Similarly, the project deliverable described the results of an analysis
of the sample carried out manually in order to recognize whether the APK was
malicious or not.

To summarize, the evidence reported by DroydSeuss led us to finding either
(1) automatically generated analysis reports that confirmed their correctness,
or (2) manually written technical reports that certainly required human effort.
Therefore, we can argue that DroydSeuss extracts data that is correct and useful

kundencenter-accountservice.com


for analysts. Of course, this manual effort was required only once to confirm our
findings.

3.4 Experiment 3: Runtime Performance

From analyzing 100 apps, we conclude that DroydSeuss completes the analysis of
one APK in about 5 minutes on average. The heaviest part is dynamic analysis
with an average of 4’40”. Static data extraction and ranking are negligible.

4 Limitations and Future Work
The itemset mining process may be subject to specific evasion attempts. By
randomizing the entire package name an attacker could make DroydSeuss generate
one low-frequency itemset per distinct APK. However, this would be against the
attacker’s goals who wants to mimic the official apps. Indeed, recent work [13]
showed that, according to the cyber criminals’ modus operandi, the package
name is suitable as a lightweight identifier. As a mitigation, other features could
be used together with the package name to better characterize a sample.

Since Android malware’s sophistication is relatively low compared to PC-
based malware, DroydSeuss does not trace native code. Future work should focus
on whether this is necessary and, if it is, how this can be implemented efficiently.

DroydSeuss inherits the limitations of dynamic analysis. A sample may not
show its (malicious) behavior because some code paths are not reached, it
recognizes that it is running in an emulator [17,21] or it employs advanced timing
attacks. Our experience indicates that samples need to contact the C&C at least
once, which is enough for our purposes. Notwithstanding, as a mitigation, our
sandbox strives to stimulate the execution by injecting various events and we
also used a patched emulator that resembles a smartphone-like hardware profile.

In addition to addressing the first two limitations, we foresee another research
direction. While searching for qualitative evidence to support our findings, we
understood that infection campaigns against desktop computers could be used as
an early-warning indicator of upcoming mobile infection campaigns. Indeed, we
foresee an approach that tracks the HTML content injected by ZeuS (desktop)
and checks whether it contains signs of URLs or QR-codes pointing the user to
download an APK. Moving from this observation, more advanced pre-infection
indicators could be derived in order to alert mobile customers.

5 Conclusions
The community of malware researchers relies on publicly available feeds. Droyd-
Seuss is a first step towards a public tracker of mobile botnets in the spirit of
ZeuS Tracker. The Android Malware Trckr appeared some months [15] after
DroydSeuss, showing once again the importance of such data feeds.

With this work, we showed that the simple yet effective ranking mechanisms
that DroydSeuss conveys, can correctly pinpoint relevant active campaigns,
concluding that our approach works.
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