978-14799-3360-0/14/$31.00 ©2014 |EEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

Rippler: Delay Injection for Service Dependency
Detection

Ali Zand*, Giovanni Vigna*, Richard Kemmerer*, Christopher Kruegel*
*UC Santa Barbara {zand, vigna, kemm, chris}@cs.ucsb.edu

Abstract—Detecting dependencies among network services has
been well-studied in previous research. These attempts at service
dependency detection fall into two classes: active and passive
approaches. While passive approaches suffer from high false
positives, active approaches suffer from applicability problems.

In this paper, we design a new application-independent
active approach for detecting dependencies among services. We
present a traffic watermarking approach with arbitrarily low
false positives and easy applicability. We provide statistical tests
for detecting watermarked flows, and we compute the false
positive and false negative rates of these tests both analytically
and experimentally.

Furthermore, we implemented the proposed watermarking
system (Rippler) in a small university lab network. We ran our
system for four months and detected 38 dependencies among 54
services. Finally, we compared the efficiency of our approach
against three previous systems by testing them on this real-world
network data.

I. INTRODUCTION

Corporate and governmental computer networks are targets
of constant attacks [16]. Although the attackers targeting these
networks may have different incentives, goals, and techniques,
they generally target the same aspects of the system: confi-
dentiality, integrity, and availability. While confidentiality and
integrity properties have historically attracted more attention
from the security community, the availability property has been
comparatively neglected.

We depend on network services for many of our daily needs
(e.g., Internet banking, personal accounting, social networking,
and medical services). The ubiquity and diversity of network
services have led to an ever-increasing complexity of the
infrastructure supporting these services. As engineers use
divide-and-conquer to attack complexity, these services are
implemented as composite modules, built of multiple, simpler,
underlying services. This modular approach enables designers
to reuse standard services to build complex customized ones.
For example, a webmail service is usually implemented using
several simple modules including a web service, an email
service, and a DNS service.

This modular design paradigm has security and reliability
implications. On the one hand, the modular design along with
reusing and sharing modules makes it challenging to determine
a distributed system’s perimeters. This, in turn, can lead to
insecure network topology design. On the other hand, the
modular design makes it challenging to prioritize security
events and assets, to correlate security alerts, to generate attack
graphs, and to provide situational awareness.

978-1-4799-3360-0/14/$31.00 (©2014 IEEE

2157

As services become more complex and increasingly dis-
tributed, protecting them becomes more challenging. Because
there are more components that can fail and make the whole
service unavailable, distributed systems are generally more
difficult to protect. One needs to know the components of
a composite service to be able to protect it. Unfortunately,
these implementation and dependency details are often undoc-
umented and difficult to identify in complex networks.

An example of a composite service is a webmail service.
A typical client checks her email using a web interface, by
first contacting a DNS server to acquire the IP address of the
webserver. The webserver, in turn, contacts a Kerberos server
to authenticate the user, an Active Directory server to load the
user’s contact list, a MySQL server to load the user’s profile,
and an SMTP server to send the user’s email. If any of the
involved services fail, the final webmail service will fail or
will be degraded. The system administrator needs to know
the dependencies between the involved services to be able to
adequately protect the webmail service.

Previous work on service dependency detection can be
divided into active [10] and passive [14] approaches. Passive
approaches do not generate any additional traffic. They simply
observe the existing traffic and find the set of services that
exhibit correlated activity. Active approaches, on the other
hand, manipulate the timing or the contents of the traffic to
identify dependencies. Each of these approaches has its own
advantages and disadvantages.

Passive approaches suffer from two main problems: higher
false positive rates and the inability to detect the direction
of the dependency relations (who depends on whom). These
problems result from the fact that “correlation does not imply
causation.” In other words, when two services are correlated
with each other it does not necessarily mean that they depend
on each other. For example, two services may depend on and
be influenced by a third service, and that is the reason why
their activities are correlated. Noise and jitters in a real-world
network can also cause occasional spurious correlated activity
in the services. This problem leads to the detection of false
dependencies (false positives). Even when one service depends
on a second one, the correlation does not show which service
depends on the other.

Active approaches are harder to apply, as they require
higher level of access to the individual systems, require more
modifications to the system, and are usually application depen-
dent, and they may even introduce more load into the network
(e.g., by adding tags to application-specific traffic). The high
level of access and high level of modification to the network
that are required by active approaches make their application
in a real production system, at the very least, challenging.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

Moreover, application-dependent approaches cannot be used
for detecting dependencies between unknown types of services.

In this paper, we provide an active watermarking ap-
proach that is application-independent and inflicts minimal
burden on the network. To detect dependencies, we create
temporal perturbation patterns in request arrival timings for
different services, and we determine whether or not these
patterns propagate to other services. We provide an analytical
framework to interpret the results of the experiments using
statistical inference. More specifically, we use three different
statistical tests to show the existence of the dependency
relationship. We analytically show that any desirable level of
accuracy can be achieved if the experiment running time is
long enough. We implemented a watermarking system, called
Rippler. Finally, we deployed this watermarking system in
a university computer laboratory network and detected 38
dependencies.

Our approach requires the ability to selectively delay
packets and access to a network dataset that contains infor-
mation about each individual network connection start and
end time. Any frequently used network traffic dump format,
such as NetFlow [7] records or tcpdump, contains the required
information about the network connections.

Our contributions are the following:

e We provide a
flow-watermarking
dependencies.

novel application-independent
approach for detecting service

e We provide statistical models of the watermarking ap-
proach and provide three statistical tests for detecting
service dependencies. We show that the suggested tests
can achieve arbitrarily small error probabilities given large-
enough data samples.

e We implemented a flow-watermarking system, and we
installed it in a university department network and analyzed
the gathered data. Our system detected 38 dependencies
using this system, some of which were not previously
identified by the system administrators.

e We compared the results of our approach to three previous
works in dependency detection. We showed that Rippler
outperformed the passive approaches and produced outputs
with high levels of confidence.

II. SERVICE DEPENDENCY

In this paper, we define a network service as a process
running on a host and serving requests destined to a network
socket (triple of IP address, port number, and protocol). We
define dependency among services as follows. A service Ss
depends on service S; if a delay, degradation, or failure in
service S7 leads to a failure, disruption, or degradation of
the service of S,, directly or indirectly. Services can have
different types of dependencies between each other. Chen et
al. [6] classified network service dependencies into two classes:
local-remote and remote-remote dependencies. Service S7 has
a local-remote dependency on service Sy if S, to serve its
clients, needs to contact Ss. Service S5 has a remote-remote
dependency on service Sp if a remote client, to access service
S, needs to access service S first.

2158

Figure 1: Local-Remote vs. Remote-Remote Dependency

client
service 1

service 2
(a) Local-Remote Dependency

_/

(b) Remote-Remote Dependency

client

service 1

service 2

Figure 1 shows examples of remote-remote and local-
remote dependencies. The graphs in this figure show the
execution order of a request. The X-axis is the time axis. The
graph shows the order of execution and request-response. A
horizontal line shows local execution on one machine, while a
downward line from one machine to the other means the first
machine sent a request to the second one and is waiting for
the response, and an upward line from a machine to another
shows that a response has been returned.

Figure 1(a) depicts a local-remote dependency between
service 1 and service 2. In this figure, the client connects to
service S7. Service Sp in turn connects to service Sy. When
service Sy replies to the request from S;, S7 computes and
returns the appropriate response to the request from the client.

Figure 1(b) shows a remote-remote dependency. In this
figure, the client connects to server S; to request a service.
The response from S; enables the client to connect to So.

Certainly, one can imagine more complicated types of
dependencies, but they can be generalized by considering the
fact that dependencies are transitive relationships. In other
words, if S3 depends on S3, and Sy depends on S7, S3 also
indirectly depends on Sj.

To express the transitivity property of the dependency
relationship, we define the following: S; — So means that
service S1 depends on service S (either by a local-remote

L
or a remote-remote dependency). S; — S5 means that
service S; depends on service S2, and this dependency is

a local-remote dependency. Similarly, S; EiN S2 means that
service S7 depends on service Sy and this dependency is
a remote-remote dependency. Using this formalization, the
transitivity of the dependency relation can be expressed as:

SlgSQ /\(Sg—>53):>51£>53

SliSQ /\(S2—>S3):>81£>53
This property can lead to non-trivial dependencies among
services that one would not suspect may depend on each other.

It should be noted that a service S; can have, at the same
time, both local-remote and remote-remote dependencies on
service So. For example, a webserver that is acting as a web
proxy can have a remote-remote dependency on a DNS server,
because the clients need to contact the DNS server to acquire

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

Figure 2: Effect of delays
client PR

client — — service 1 - -

service 1 — service 2

service 2 L

client R —_—
client R

[service 1 (delayed) __ i
service 1 (delayed) | _ \— /'
service 2 (affected)
service 2 (affected)

client _ — — client

service 1 (unaffected)\ service 1 (end-time | Y] -

\; affected) [
. service 2 (delayed) __

(a) Effect of delays on remote- (b) Effect of delays on local-remote

remote dependency dependency

service 2 (delayed)

the webserver’s IP address before contacting the webserver.
Moreover, this webserver also has a local-remote dependency
on the DNS server, because it needs to contact the DNS server
to acquire the IP address of the website requested by the proxy
user.

In this paper, we detect both direct and indirect dependen-
cies using a watermarking approach.

III. WATERMARKING FOR DEPENDENCY DETECTION

Although watermarking has been widely used for
deanonymization purposes, applying the same techniques to
detect service dependencies is far from trivial. The reason
is that deanonymization methods match pairs of connections
carrying the same information to each other, while depen-
dency detection systems match services whose connections are
causally related, and not usually carrying the same information.

When two services depend on each other, we expect that a
delay in connection to one service will result in a similar delay
in connection to the other service. However, the way in which
the delay propagates and its direction depend on the type of
the dependency. Interestingly, this fact can be used to further
distinguish the type of the dependency between services.

As mentioned earlier, service S; has a remote-remote
dependency on service S; ! if clients need to contact service S
before contacting service Ss. A classic example is a client that
needs to contact a DNS service before contacting a webserver.
In this case, a delay in the beginning of the connection to the
DNS service (S7) results in a similar delay of the start time
of a connection to the webserver (S5). On the other hand, a
delay in the beginning of a connection to the webserver (S3)
does not have any effect on the connections to the DNS service
(S1). Figure 2(a) illustrates this concept.

Service S; has a local-remote dependency on the service
So if service S contacts service S, whenever it is contacted
by a client. An example of a local-remote dependency is a
webserver that needs to contact a MySQL server to load the
contents for satisfying a client request. In this case, a delay of
the beginning of a connection to .Sy results in a similar delay
of the start time of a connection to S5. In addition, a delay of
the start of a connection to So results in a similar delay of the

'Throughout the paper, the service that has to be contacted first will be
called Sp

2159

Figure 3: Delayer effect on connections

source)
delayer

destination

end time of a connection to S;. Figure 2(b) shows this type
of dependency.

To leverage these properties to detect dependencies, we
need to detect the resulting delay in the depending service.
In the next section, we provide the required modeling and
statistical framework for detecting the propagated delay.

IV. INDUCED PERTURBATION MODEL

To detect dependency relations, we create delay patterns
that statistically stand out and can be distinguished from
random variations.

A. Detection of the Injected Delay

To detect the dependency relations, we need to detect
artificially-injected delays. Assume the following scenario: A
connection C' to service S; is delayed. As a result, service
S1 will contact service Sp through connection Cy with a
delay (For the sake of simplicity, we assume a local-remote
dependency. A similar argument can be used when a remote-
remote dependency exists between the services). The observer
will see these two connections, along with thousands of
other connections, and may not be able to recognize the two
connections C; and C5 as being causally related.

To make the perturbation visible to the observer, we create
different patterns in the request arrival times at a selected
service. These patterns are different in different time windows,
but result in similar patterns in the related service.

To model the service activity, we divide the observation
period into time windows of equal size (wi,ws,..., Wy,
where |w;| = sy, in which s,, is the window size, and 2n is
the number of time windows). We delay the requests directed
to service Sy for t; in odd time windows
Wi, W3, Ws, ..., Wws,—1 and we do not delay them in even
time windows. This process will create time windows with
more than average requests (¢, busy time window) and time
windows with less than average requests (¢; idle time window)
on Sy (also referred to as ripples), as shown in Figure 3. It is
straightforward to show that the size of idle time windows
and busy time windows is equal to the amount of delay
(t; = tp, = tg). The smaller the time window size, the more
samples can be gathered during a fixed period of time. On
the other hand, the time window size, s,,, should be large
enough to separate the effects of consecutive tests and make the
samples independent of each other. In other words, the delayed
packets (and the connections triggered by them) should have
enough time to reach their destination before the next period
of delaying starts.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

Let’s assume that the number of requests for service Sy in
different time windows (t4) follows an unknown distribution
Dy = D(up, 09), with the mean and standard deviation equal
to po and o, respectively. Also, assume that p is the fraction
of requests destined to S5 that are caused by requests destined
to Si.

When requests destined to S are delayed in the described
way, the number of requests in the idle time windows and busy
time windows on Sy follow
Dy = D(po - (1 = p),00- (1 —p)) and
Dy = D(uo - (14 p),00 - (1 + p))?, respectively. In other
words, this watermarking results in consecutive periods of
length ¢4 of distributions D1 and D separated from each other
by periods of length w — t4. The request arrival distribution
for the time period between the busy and idle time periods
follows distribution Dg. In the next section, we show how
these artificially-generated patterns can be distinguished from
random noise with high levels of confidence.

V. STATISTICAL INFERENCE

To show the dependency of two services, we want to reject
the hypothesis that two services are independent. Therefore, we
use statistical hypothesis testing for showing the existence of
the dependency relationship. First, we assume that the given
services are independent. In other words, injecting delays in
one service does not alter the request arrival time distribution
on the second one (null hypothesis). Then, we compute the
conditional probability of the observed request arrival time
samples, given the null hypothesis. If the probability of the
observed sample, given the null hypothesis, is lower than a
threshold, the null hypothesis is rejected and the dependency
between services is assumed.

While we use the described request delaying scheme, we
use different statistical tests for comparing the means of the
two populations and to reject the null hypothesis, including:
two independent samples means t-test, two dependent samples
means (paired) t-test, and two dependent samples (Wilcoxon)
signed rank test.

To simplify the formalization, and without loss of
generality, we assume that we want to determine the
relationship between services S; and S;, while we are
delaying requests destined to S;. To describe the experiment,
we use the following variable definitions:

X is the random variable for the number of requests arriving
to service So in each time window of length t;, when no
delay is applied?.

X? and X° are the random variables for the number of
requests arriving for service S in each t; and t, time
windows, respectively.

j; and 1, are the mean of X* and X?, respectively.

Our null hypothesis is that the busy and idle time windows
have the same average request arrival rates: Hy = pu; = Up.
The null hypothesis states that Sy is independent of S;, and,
as a result, injecting delays to requests to .57 does not change
the request arrival distribution in S (Hy = p; = pup or

M X ~ D(pz,0z) and Y = aX then py = a - pg and oy =
\/Zwi—uyﬂ _ \/Z(a-mi—aw)?
n n

3We use sliding time windows

=a- 0y

2160

equivalently p; # up = Hi).

We describe several statistical tests to calculate
Pr (e|u; = up), in which e is an observed test statistic. In the
rest of this section, we describe each statistical test and its
properties.

A. Two Independent Samples Means t-Test

This test computes the probability that the distributions
from which two samples are drawn have the same means.

The p-value of the 2-sample t-test is calculated using the
following formula:

(7= X7) (=)

2 2
SP SP

ny | ong

t:

Xv_x7 .
% follows t-distribution
b 5
mp g
with df = ny + n; — 2 degrees of freedom, where,
2 _ (mp—1)-SZ4+(n;—1)-57 2 _ 88 2 _ S8,
Sp = pyE— and S} = v and S7 = P

Ho= pi —pp=0=1t=

We already showed that if Sy L, SV So £, S1,
i = po- (1—p) and pp = po - (14 p). Using the central limit
theorem, it can be shown that, regardless of how small p is, an
arbitrarily small p-value can be obtained given a large-enough
set of samples. In other words, the following holds:
X = X0 —— iy — i
Hy = py # pi = 52 sznﬁoo =
242 0

ney ng

n—oo

— —
% — 400 = p — value —— 0.
S3 . S n—oo n—»00

=1t =

np g

On the other hand, if the two services are independent,
regardless of the size of the sample, we will not see small
p-values. To summarize, this test is reliable as long as a large-
enough sample set is available. However, this test is sensitive
to noise, because a small number of data points with extreme
values can skew considerably the test results.

Given a desired false positive rate (o) and false negative
rate (/3), the required sample size can be calculated by: N =
o (MbLni ML) (7,4 Z5)? 3

(o—pi)? []

B. Two Dependent Samples Means Paired t-Test

The number of requests that arrive at S2 in each idle
time window (z?) is related or dependent on its neighbor
(consecutive) busy time window (z), as servers have different
load/request arrival behavior during different times of the day.
Unfortunately, the two independent samples means test does
not take advantage of this property.

If we consider each consecutive value of t; and ¢, to be
related samples, we can use the paired sample t-test. If we
define D = X — X7, the following variable, t ratio, follows
Student’s t distribution with df = n — 1* :

_ D _ D
t= S5p SSp (8]
vn n(n—1)

4df: degree of freedom

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

It should be noted that if the null hypothesis is not true,
increasing the size of the sample set increases the power of
the test. -

D —— = i

Hy =y # i = s 0 =
o n(n—1) n—00
ét:% — +o00 = p —value —— 0
n(n—DU n—oo n—oo

Therefore, the power of this test increases as the number of
samples increases. This property is important, because if up —
w; s relatively small, the difference between the distributions
can still be distinguished by increasing the size of the sample
set (i.e., by running the experiment for a longer time).

This test is less sensitive to noise (extremely high or low
values in the samples) than the two independent samples means
test, because extreme sample data values increase or decrease
both the nominator and the denominator of the fraction in ¢
formula. But, a small number of extreme values still can skew
the test results considerably, because the absolute value of the
sample data points are used in computing .

Similarly, given a desired false positive rate (o) and false
negative rate (3), the required sample size can be calculated

2 0_2
by v = g2

C. Two Dependent Samples Means
(Paired Wilcoxon) Signed Rank Test

One would expect the network behavior to change through
time. For example, a university web server may be busier
in specific times of the year (e.g., during the registration
period). Nevertheless, one would also expect that the network
behavior of a service would be rather similar in two close
time periods. The two independent sample t-test does not take
advantage of the fact that ¢; (idle time windows) and t; (busy
time windows) samples are pairwise related. That is, the two
independent sample t-test ignores the order of the sample data
points. In contrast, the two dependent samples means t-test
uses this ordering information, but it remains sensitive to noise,
because it uses the absolute value of the sample data points in
computing t.

An alternative statistical test that takes pairwise depen-
dency between samples into account is the Wilcoxon test. The
Wilcoxon test checks whether or not paired samples of ¢; and
tp are drawn from the same population. In this approach, we
match each ¢; to its consecutive t;. In the null hypothesis, we
consider ¢;s and tps as samples of the same population. In
other words, if service S2 does not depend on S, delaying
requests to service S7 should not create any changes in the
distribution of the requests to Ss.

To prove that service Sy depends on service Si, it is
sufficient to show that the number of requests received on
service Sy at t;s does not follow the same distribution as the
number of requests received at ¢;s. Because the ¢;s and #3s
are paired and related, we use Wilcoxon signed-rank test to
calculate the z-score for the null hypothesis (that ¢;s and s
belong to the same distribution).

In this test, each X is paired with an X° value. The k'"
pair is denoted as X, X}C’.
Dy = |Xi — XP|, W = |>1_, sgn (Dy) - Ry|, where Ry, is

2161

the rank of Dy when the list is sorted in ascending order. A
z-score can be computed using z = W05, where

ow = n(n+1)6(2n+1)

It can be shown that if the two distributions are different
(pi #), D has a distribution with a non-zero average.

Please notice that Hy = p; # pp = 2 — 00 =
n—oo
= p —value —— 0.

In other WOI’dS,n r_egoardless of how small the fraction of delayed
requests (p) is, arbitrarily small p-values can be

achieved by increasing the length of the experiment (period
of time). To validate these analytical results in a real world
scenario, we ran simulations varying p, u, and the length of
the experiment. The simulations verified the analysis.

Finally, we report service S to depend on service 57 if
any of the three statistical tests can reject the null hypothesis.

D. Environment Effects on the Accuracy of the Statistical Tests

There are several factors in a real network environment that
can limit the accuracy and power of the proposed statistical
tests: low number of requests to the server; low percentage
of the requests to the server affected by the delayer; jitter in
the network; cached services; overloaded servers; and popular
services. Many of these challenges are partially modeled and
the proposed statistical framework can address these challenges
by increasing the sample size:

Low number of requests to the server is directly modeled
as small p, which will require higher number of samples for
achieving the desired level of accuracy.

Low percentage of the requests to the server affected by
the delayer is directly modeled by small p which will need a
higher number of samples.

Noise and jitter cause a fraction of the packets to arrive at a
different time than when they were supposed to. By assuming
that a percentage of the packets will not be affected by noise
and jitter, the effect of noise and jitter on Rippler can be
modeled by assuming the fraction of packets influenced by
the delayer (p) is small.

Cached services can be modeled as a low percentage of
packets being delayed by the delayer, because even a cached
service is called once in a while.

Overloaded servers, or non-responsive services, are equiv-
alent to noise and jitter in the network for an analyzer that
only observes the arrival times of the packets, because jitters
happen in networks as the relays become overloaded.

Popular services (services used by multiple composite
services) can be modeled by a low fraction of the requests
to the service being delayed by the delayer.

VI. IMPLEMENTATION

We developed two versons of our delayer: centralized
delayer (installed on a bridge) and host-based delayer (installed
on hosts). We used our centralized delayer in a small lab
network under our control as a prototype. We introduced the

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

minimal amount of delay that is required to detect pertur-
bations. This delay time should be greater than the clock
discrepancy between the delayer and flow collector devices.
The clock discrepancy in our network is less than or equal to 40
milliseconds (the computer clocks are synchronized by NTP).
We used a delay of 100 milliseconds, which one can expect not
to have significant effects on typical services. We are aware
that there may exist services for which 100 milliseconds of
delay could cause a failure, but these services are usually
not implemented in typical TCP/IP networks. These services
should have their own dedicated networks as small amounts
of delay/jitter are expected in regular networks.

The first packets to each service, when it is its turn, is
delayed for 100 milliseconds in a period of 10 seconds, then
no service is delayed for 10 seconds, and the next service is
delayed afterwards.

In our prototype implementation, we were able to show that
the busy and idle time windows (s and t;s) are detectable.

A. Installation and Detected Dependencies

We installed our delayer and NetFlow collectors in a uni-
versity department lab. Unfortunately, the university network
administrators were not able to provide us with a central
delay injection point in their infrastructure. Therefore, we were
forced to deploy our host-based delayer. The delayer was
installed in a lab used by students (mainly for doing their
assignments and homeworks). To overcome the clock discrep-
ancy between the hosts that run the delayer, we increased the
amount of delay from the original 100ms (used in the prototype
system) to 500ms (the delay discrepancy between the hosts was
around 40ms). A set of 54 most frequently used services were
selected to be delayed.

In a normal day, students use the computers in this lab
to do their homework. All the machines in the lab are
centrally managed (using cfengine) and they have an identical
configuration. Users authenticate using an LDAP server, and
their home directories are mounted from several NFS servers.
Users check and send emails using an internal mail server, and
an internal DNS server is used to look up IP addresses. All
hosts have an /etc/hosts file that lists all the internal servers’
names along with their IP addresses.

Network administrators provided us with a central network
data gathering point. The network traffic information is gath-
ered in NetFlow format. We gathered 133GB of NetFlow data
which corresponds to 12.5 billion connections. The packets
were delayed for 500ms.

In the course of the experiments, we delayed requests to
54 services. We compared our results with three previous
approaches. We first present the comparison of our approach
to these approaches in Section VII. Later in Section VIII, we
describe previous work in dependency detection and compare
the characteristics of our approach against the previous work.
Table I shows the detected true dependencies using Rippler.

VII. COMPARISON WITH SHERLOCK,
ORION, AND NSDMINER

We ran Sherlock [3], Orion [6], and NSDMiner [14] (three
passive dependency detection systems) on our NetFlow dataset

2162

Table I: The dependency analysis results

service perturbated services
NFS1 LDAP, web, cfengine, dhcp, portmapper,
lab shell, DNS

web26 NFS26, portmapper26
NFS46 LDAPI12, LDAP36, NFS13, dhcpl0, NFS41
CFengine | NFS1, NetBios, IMAP, NFS2

NFS3 MySQL and NFS4
WWW NFS1, IMAP, NFS4

Figure 4: ROC curves for Rippler, NSDMiner, Orion, and
Sherlock

Rippler —e—
Sherlock —s—
NSDMiner —s—o

Orion —=—

50 -

40 |

30 -

True Positive

20 -

10 ¢

0 10 20 30 40 50
False Positive

gathered from the department computer lab. The results of the
experiment are shown in Figure 4. We ran all four systems
with different parameter tunings and calculated the number of
false positive and true positives for each tool, and for each
configuration. As shown in Figure 4, Rippler produces less
false positives for any given true positives that it generated.
It should be noted that Rippler did not generate any false
positives when we set the p-value to any value less than or
equal to 1076,

To verify and compare the results, we manually labeled
156 dependencies (the superset of all resulting dependencies
from all four tools). The dependencies were confirmed by
interviewing the administrators. We also looked into the
configuration of the hosts in the lab. As all the hosts share
the same configuration, by looking into the host configuration
we learned about many dependencies.

In the end, 68 of these 156 dependencies were true
dependencies, 70 were false dependencies, and we were not
able to determine the correctness of 18 dependencies.

A. Sherlock

Sherlock calculates the strength of a dependency relation
from service Sy to service S; as the probability that service
S accessed within a time interval from when service S is
accessed. Among other problems, this approach will detect
every pair of frequent services as depending on each other.
The results of our experiments verified this property. Sherlock
created a large number of false positives, and typically these
false positives included the most-frequently-used services.

It should be noted that we recognize the fact that we tested
a partial implementation of Sherlock, using only the part that

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

detects the service dependencies. Sherlock, in addition, uses
this information to predict system failures and localize faults.

B. Orion

Orion exploits the fact that if two services are depending
on each other, the delays between consecutive accesses follow
some pattern. For example, if an application needs to access
service S; before accessing service S, the delay between
accesses to service S; and service Ss will follow some
non-random distribution. Orion uses this property to detect
this different distribution from a random distribution. Al-
though Orion has a more compelling confidence measure than
Sherlock, it still fails to create high-confidence dependencies.
Orion confidence in a dependency relationship is expressed
in how different the delay patterns between accesses to the
two services are from random, in terms of number of standard
deviations. In our experiments, Orion did not generate any
dependencies for any confidence higher than 1.5 standard
deviations, which corresponds to p — value = 0.1336.

C. NSDMiner

NSDMiner detects only local-remote dependencies. There-
fore, it misses remote-remote dependencies. Another problem
with NSDMiner is the fact that it is sensitive to the timing
information of the sensors. NSDMiner detects a dependency
from service A to service B when the probability that the life
span of connections to service B is included in the life span
of a connection to service A is higher than a threshold. This
threshold is called o. We varied o from 0O to 1.

In our experiment, the NetFlow probes and the delayer are
placed between the lab clients and the servers they use, which
are located in a server room. Therefore, most of the traffic
from a server to another does not pass our probes and delayers.
This property makes the remote-remote dependencies the most
common dependencies in our configuration. NSDMiner does
not try to detect remote-remote dependencies, and therefore it
misses most of the true dependencies in our configuration.

D. Correlation Does Not Imply Causation

The most common problem with correlation-based ap-
proaches for dependency detection is the confusion of corre-
lation with causation. In other words, passive approaches are
susceptible to false positives. The experiments showed that the
problem exists in the approaches we tested.

For example, the correlation-based approaches detected a
dependency from several services to the main DNS server. This
dependency is a false positive, because the machines that are
used in the experiment have the IP addresses of the hosts in
the internal network in their /etc/hosts file. Therefore, these
hosts do not need to lookup the IP addresses of the internal
services. The reason for the false positive is that DNS is one of
the most frequently used services in the network, and therefore
it appears as the prequel to other services being used. This
property of the DNS server has led to false dependencies
detected by both Orion and Sherlock. NSDMiner does not
detect dependencies to the DNS server, because NSDMiner
only detects local-remote dependencies”.

Sthe dependency between the services and DNS server is usually a remote-
remote dependency

2163

Figure 5: Distribution of detected ripples in different time slots

20 ¢

15

1111 I T N I

0 10 20 30 4

slot no

frequency
[
(=]

0

50 60 70 80

E. Rippler

In the experiment, we excluded the services that did not
receive at least 1000 requests in the period of data gathering.
We varied p-value from 1 to 10~2%. We experienced some false
positives when p-value was greater than 10~5, but when we
reached 1076, all false positives disappeared.

When we included the idle services (services with less than
1000 requests during the experiment), seven false positives
appeared.

We did not expect any false positives from Rippler. The
reason for this confidence is that when a ripple is detected the
probability of it being caused by a random process is negligible
(by choosing a small enough p-value as the threshold). One
possible explanation is that the dependency between two
services has a long time lag and therefore the delay ripple from
the first service arrives late and is considered as the effect of
another service.

Figure 5 shows the distribution of the detected ripples
among the time slots. Each window of time dedicated to a
service is called a period. Each time slice inside a period that
is used to detect a ripple is called a time slot. As a period
is 20 seconds long and we use 500ms of delay, we have 80
slots in each period (because of using sliding windows). As
shown in the figure, the ripples are either in the left side of the
period or in the middle of it. Even though most ripples follow
this pattern, which is expected from a low-latency dependency,
we observe several cases of ripples scattered in random slots.
This shows that high-delay dependencies exist among our
services. These high-delay dependencies can be the cause of
false positives, because they confuse Rippler in recognizing
which service delay was responsible for the observed delay
in the target server. This problem can be easily resolved by
dedicating a longer time period to each service.

VIII. RELATED WORK

Previous work on service dependency detection includes
many different approaches. In order to compare the previous

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

work, we first introduce some desirable effectiveness criteria
for a dependency detection approach.

A. Dependency Detection Effectiveness
Metrics

One can expect several properties from an ideal depen-
dency detection system. The dependency detection ideally
should: be able to detect direct and indirect dependencies; be
able to handle the partial data; affect the network operation
minimally; be easy to deploy; be application-independent;
require a minimum amount of change to the machines in the
network; provide a metric of meaningful confidence; need a
minimum amount of high level data; and be able to work with
anonymized data.

A dependency-detection approach may or may not detect
both local-remote and remote-remote dependencies.

A dependency detection approach may or may not work
with partial data. Partial data issues occur when the whole
information flow path from the depending service to the
depended service is not visible to the system. For example,
assume that service S; depends on service S3, which in turn
depends on service Sy, which finally depends on service S;. If
the communication between service So and Ss is hidden from
the system, the dependency detection system will not be able
to build the entire information flow path between service S;
and service S; and may miss the dependency relationship.

A dependency detection approach can be host-based or
network-based, depending on the data source it uses (network
traces or system logs). Network based systems are generally
easier to deploy.

A dependency detection approach can be
application-dependent or application-independent. ~ An
application-independent approach works correctly in presence
of unknown types of services. On the other hand, the
application-dependent approaches need readjustments or
reimplementations for different types of services.

A dependency detection approach may or may not provide
a measure of confidence for detected dependencies. To have
a confidence level for each dependency detection can help
the administrators to decide and choose their most important
dependencies based on the most reliable information.

And finally, a dependency detection approach may or may
not be susceptible to confusing correlation with causation.

B. Previous Work

NSDMiner [14] is a passive correlation-based dependency-
detection system. It looks only for local-remote dependencies
by computing the probability of the remote service being
requested given the local service being requested.

eXpose [11] is another passive dependency-detection sys-
tem. It uses JMeasure as a metric for measuring the depen-
dency of two services. eXpose uses statistical rule mining to
detect frequent patterns of communication between services.
As it detects correlation between services, it is also susceptible
to false positives. eXpose needs to see the information flow
path between the correlated services and therefore, cannot

2164

handle partial data problem. It also suffers from false positives,
because it is a correlation based technique.

Chen et al. [6] developed a passive dependency-detection
system called Orion. Orion uses traffic delay distributions to
find services that depend on each other. More specifically,
Orion looks for spikes in delays of service usage. The de-
lay patterns (spikes) between two independent services are
expected to be random, while the delay distribution between
two depending services follows some distribution that depends
on the execution path of the services. As a correlation detection
technique, Orion also suffers from the false positive problem.

Sherlock [3] is a passive host-based dependency-detection
system. Sherlock recognizes dependencies between two ser-
vices only when the same client (on which Sherlock processes
are run) directly contacts both services. Therefore, it does not
detect local-remote dependencies. Sherlock also suffers false
positives, because it detects correlated services as depending.

Pinpoint [5] is a host-based active dependency-detection
system that uses system logs to trace the requests across a
distributed system. Pinpoint modifies the service under study
to generate unique IDs for each request and pass them through
the system. Pinpoint is application-dependent, and cannot be
used to detect dependencies among unknown services.

Macroscope [15] is a passive host-based dependency-
detection system. It uses system logs to map network con-
nections to different applications/processes. The analyzer ag-
gregates the information gathered on different hosts to extract
the dependencies between different applications.

Constellation [2] is a passive dependency-detection system
that uses activity correlation as a measure of dependency. It
uses statistical hypothesis testing to calculate confidence of the
derived dependency relations.

X-Trace [10] is an active dependency-detection system that
modifies network protocols to carry X-Trace meta-data. It
inserts unique identifiers into the requests and propagates them
to the further requests generated by the original one. Then,
X-Trace gathers this information and builds a tree structure of
the request path.

Kind et al. [12] used a passive correlation-based approach
to detect direct and indirect dependencies between different
services in a corporate network.

Dechouniotis et al. [9] developed a passive network-based
dependency-detection system. They used NetFlow network
data, and used a fuzzy inference engine to classify the detected
relations as high confidence and low confidence relations.

ADD [1], [4] (Active Dependency Discovery) uses active
perturbation to detect dependencies between services. This
approach uses a relatively aggressive method as it perturbs
different components of the system by load injection. ADD
creates some workload on a component in the network and
observes its effect on another component. To create appropriate
workload for a service, ADD needs to understand the logic of
the service. Therefore, ADD is application-dependent. ADD
also has problems detecting dependencies to replicated (or load
balancing) components, as adding load to one component may
not necessarily lead to reduced efficiency of the target service.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

Table II: Comparison with Dependency Mining Tools Table
column names correspond to the following properties: handling
both Local-remote and Remote-remote dependencies (LR), handling
Bad Sensor Placement (SP), No modification to the Hosts (NH),
No extra Traffic injected (NT), Application Independence (Al), Not
Confusing Correlation with Causation (NCC). A ‘Y’ means that the
corresponding system handles the corresponding problem, and an ‘N’
means that it fails to completely handle the corresponding problem.

Approach LR | SP
NSDminer [14]
eXpose [11]
Orion [6]
Sherlock [3]
Pinpoint [5]
Macroscope [15]
Constellation [2]
X-Trace [10]
ADD [4]

[Rippler [

NT | Al | NCC

=~

~|Z

< 2|2 2| 2| 2| z|<| < <| Z

|| | | | 2| =] Z| <
|| | ~| 2| 2| 2| 2| 2| Z| z
I Y e R S I
I S I e S I

|| =| ~| Z| z| | | Z| 2| Z

In summary, all previous passive approaches are susceptible
to confusing correlation with causation. Therefore, all previous
passive approaches have high false positive rates (compared to
active approaches). However, all previous active approaches
are application-dependent, cannot be used to detect dependen-
cies among unknown services, and they need to be customized
for different services.

Table II shows and compares the features of the previous
work in service dependency detection. Rippler is, to the best
of our knowledge, the first application-independent active
dependency-detection system.

We selected Sherlock, Orion, and NSDMiner to evaluate
the performance of our system. We did not choose any of
the three previous active approaches (Pinpoint, X-Trace, and
ADD), because all these approaches are application-dependent.
In other words, they either require modification of the appli-
cations (Pinpoint and X-Trace) under-study, or need to know
details about the application protocols (ADD).

IX. LIMITATIONS

Rippler needs to be able to delay the traffic to the
servers under-study at specific times. This requires the delayer
component to be placed between the services and their cor-
responding clients. In other words, Rippler cannot verify or
reject dependencies between two services if it is not able to
delay requests to either of them.

Another limitation of Rippler is that because each service
gets delayed in specific time windows, Rippler should know
the set of under-study services beforehand.

Rippler is only able to detect the types of dependencies
that conserve delay patterns. For example, a backup or load-
distribution dependency would not be detected.

X. CONCLUSIONS

In this paper, we presented a new application-independent
active approach (Rippler) to detect dependencies among ser-
vices using traffic watermarking. We analytically showed
that Rippler can achieve arbitrarily low false positives if
provided with large enough data sets. We compared Rippler

2165

with previous dependency-detection systems using a set of
general effectiveness criteria for these systems. Furthermore,
we applied Rippler to a real-world network, and compared its
results with three previous systems and showed that Rippler
outperformed those systems.

XI. ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research
(ONR) under Grant N000140911042, the Army Research
Office (ARO) under grant W911NF0910553, and Secure Busi-
ness Austria.

REFERENCES

[1] S.Bagchi, G. Kar, and J. Hellerstein. Dependency analysis in distributed
systems using fault injection: Application to problem determination
in an e-commerce environment. In In Proc. 12th Intl. Workshop on
Distributed Systems: Operations & Management, 2001.

[2] P. Bahl, P. Barham, R. Black, R. Ch, M. Goldszmidt, R. Isaacs, S. K,
L. Li, J. Maccormick, D. A. Maltz, R. Mortier, M. Wawrzoniak, and
M. Zhang. Discovering dependencies for network management. In In
Proc. V HotNets Workshop, 2006.

[3] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. SIGCOMM Comput. Commun.
Rev., 37, 2007.

[4] A. Brown, G. Kar, G. Kar, and A. Keller. An Active Approach to
Characterizing Dynamic Dependencies for Problem Determination in
a Distributed Environment. In In Seventh IFIP/IEEE International
Symposium on Integrated Network Management, 2001.

[S] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer. Path-Based Failure and Evolution Management. In
Proceedings of NSDI‘04, 2004.

[6] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating network
application dependency discovery: experiences, limitations, and new
solutions. USENIX Association, 2008.

[71 B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC
3954 (Informational), Oct. 2004.

[8] T. Coladarci, C. Cobb, E. Minium, and R. Clarke. Fundamentals of
Statistical Reasoning in Education. Wiley/Jossey-Bass Education. John
Wiley & Sons, 2010.

[9] D. Dechouniotis, X. Dimitropoulos, A. Kind, and S. Denazis. De-
pendency detection using a fuzzy engine. In Proceedings of the
Distributed systems: operations and management 18th IFIP/IEEE in-
ternational conference on Managing virtualization of networks and
services, DSOM’07, pages 110-121. Springer-Verlag, 2007.

[10] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace:
A pervasive network tracing framework. In In NSDI, 2007.

[11] S. Kandula, R. Chandra, and D. Katabi. What’s going on?: learning
communication rules in edge networks. SIGCOMM Comput. Commun.
Rev., 2008.

[12] A. Kind, D. Gantenbein, and H. Etoh. Relationship discovery with
netflow to enable business-driven it management. In Business-Driven
IT Management, 2006. BDIM ’06. The First IEEE/IFIP International
Workshop on, pages 63 — 70, april 2006.

[13] J. M. Lachin. Introduction to sample size determination and power
analysis for clinical trials. Controlled clinical trials, 2(2):93-113, 1981.

[14] A. Natarajan, P. Ning, Y. Liu, S. Jajodia, and S. E. Hutchinson.
NSDMiner: Automated Discovery of Network Service Dependencies.
In In proceedings of IEEE International Conference on Computer
Communications (INFOCOM ’12), March 2012.

[15] L. Popa, B. gon Chun, J. Chandrashekar, N. Taft, and I. Stoica. Macro-
scope: End-Point Approach to Networked Application Dependency
Discovery, 2009.

[16] O. Thonnard, L. Bilge, G. O’Gorman, S. Kiernan, and M. Lee. Industrial
espionage and targeted attacks: Understanding the characteristics of an
escalating threat. In D. Balzarotti, S. J. Stolfo, and M. Cova, editors,
RAID, volume 7462 of Lecture Notes in Computer Science, pages 64—
85. Springer, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

