
Dymo: Tracking Dynamic Code Identity

Bob Gilbert, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna

Computer Security Group
Department of Computer Science

University of California, Santa Barbara
{rgilbert,kemm,chris,vigna}@cs.ucsb.edu

Abstract. Code identity is a primitive that allows an entity to recog-
nize a known, trusted application as it executes. This primitive supports
trusted computing mechanisms such as sealed storage and remote at-
testation. Unfortunately, there is a generally acknowledged limitation in
the implementation of current code identity mechanisms in that they are
fundamentally static. That is, code identity is captured at program load-
time and, thus, does not reflect the dynamic nature of executing code as
it changes over the course of its run-time. As a result, when a running
process is altered, for example, because of an exploit or through injected,
malicious code, its identity is not updated to reflect this change.
In this paper, we present Dymo, a system that provides a dynamic code
identity primitive that tracks the run-time integrity of a process and can
be used to detect code integrity attacks. To this end, a host-based com-
ponent computes an identity label that reflects the executable memory
regions of running applications (including dynamically generated code).
These labels can be used by the operating system to enforce application-
based access control policies. Moreover, to demonstrate a practical ap-
plication of our approach, we implemented an extension to Dymo that
labels network packets with information about the process that origi-
nated the traffic. Such provenance information is useful for distinguishing
between legitimate and malicious activity at the network level.

Keywords: code identity, process integrity, access control

1 Introduction

Modern operating systems implement user-based authorization for access con-
trol, thus giving processes the same access rights as the user account under which
they run. This violates the principle of least privilege [21] because processes are
implicitly given more access rights than they need, which is particularly prob-
lematic in the case of malware. A more robust strategy to mitigate the effects
of running malware is to make access control decisions based on the identity of
the executing software. That is, instead of granting the same set of privileges
to all applications that are run by a user, it would be beneficial to differentiate
between programs and to assign different privileges based on their individual
needs. For example, a security policy could enforce that only a particular (un-
modified) word processing application should access a sensitive document, or an

online banking application might refuse to carry out a transaction on behalf of
a user unless it can identify that the user is executing a trusted web browser.
An even stronger policy could define a set of trusted (whitelisted) applications,
while the execution of any other code would be denied.

Enforcing fine-grained access control policies on an application basis requires
a strong notion of code identity [18]. Code identity is a primitive that allows an
entity (for example, a security enforcement component) to recognize a known,
trusted application as it executes. Code identity is the fundamental primitive
that enables trusted computing mechanisms such as sealed storage and remote
attestation [20].

The state-of-the-art in implementing code identity involves taking measure-
ments of a process by computing a cryptographic hash over the executable file, its
load-time dependencies (libraries), and perhaps its configuration. The measure-
ments are usually taken when a process is loaded, but just before it executes [18].
A measurement is computed at this time because it includes the contents of the
entire executable file, which contains state that may change over the course of ex-
ecution (e.g., the data segment). Taking a measurement after this state has been
altered would make it difficult to assign a global meaning to the measurement
(i.e., the code identity of the same application would appear to change).

Since the code identity primitive is fundamentally static, it fails to capture
the true run-time identity of a process. Parno et al. acknowledge this limitation,
and they agree that this is problematic because it makes it possible to exploit
a running process without an update to the identity [18]. For example, if an
attacker is able to exploit a buffer overflow vulnerability and execute arbitrary
code in the context of a process, no measurement will be taken and, thus, its
code identity will be the same as if it had not been exploited.

In this paper, we address the problem of static code identity, and we propose
Dymo, a system that provides a dynamic code identity primitive that contin-
uously tracks the run-time integrity of a process. In particular, we introduce a
host-based component that binds each process to an identity label that imple-
ments dynamic code identity by encapsulating all of the code that the process
attempts to execute. More precisely, for each process, our system computes a
cryptographic hash over each executable region in the process’ address space.
The individual hash values are collected and associated with the corresponding
process. This yields an identity label that reflects the executable code that the
application can run, including dynamic changes to code regions such as the addi-
tion of libraries that are loaded at run-time or code that is generated on-the-fly,
for example, by a JIT compiler or an exploit that targets a memory vulnerability.

Identity labels have a variety of practical uses. For example, labels can be used
in a host-based application whitelisting solution that can terminate processes
when their run-time integrity is compromised (e.g., as the result of a drive-by
download attack against a web browser). Also, identity labels can enable fine-
grained access control policies such as only granting network access to specifically
authorized programs (e.g., known web browsers and e-mail clients).

To demonstrate how the use of identity labels can be extended into the net-
work, we implemented an extension to Dymo that provides provenance infor-
mation to all outgoing network connections. More precisely, we extended Dymo
with a component that marks each TCP connection and UDP packet with a
compressed identity label that corresponds to the application code that has gen-
erated the connection (or packet). This label is embedded in the network traffic
at the IP layer, and, therefore, it can be easily inspected by both network devices
and by the host that receives the traffic.

We have implemented our system as a kernel extension for Windows XP and
tested it on several hardware platforms (a “bare metal” installation and two vir-
tualized environments). Our experiments show that identity labels are the same
when the same application is run on different systems. Moreover, when a mal-
ware program or an exploit attempts to inject code into a legitimate application,
the label for this application is correctly updated.

The contributions of this paper are the following:

– We propose a novel approach to track the run-time integrity of a process by
implementing a dynamic code identity primitive. The primitive has a variety
of applications, at both the OS and the network levels, to enable fine-grained
access control decisions based on dynamic process integrity.

– We describe the design and implementation of Dymo, a system that extends
the Windows kernel to implement the proposed integrity tracking approach.

– We demonstrate a practical application of the dynamic code identity primi-
tive by extending Dymo to label network packets based on the application
code that is the source of the traffic. This information is useful for distin-
guishing between legitimate and malicious activity at the network level.

– We discuss our experimental results, which show that our system is able to
track dynamic process integrity in a precise and efficient manner. Moreover,
we show that identity labels are robust and correctly reflect cases in which
malicious code tampers with legitimate programs.

2 System Overview

In this section, we first discuss the requirements for our identity labels in more
detail. Then, we present an overview of Dymo, our system that implements these
labels and provides dynamic code identity for processes.

2.1 System Requirements

A system that aims to provide dynamic code identity must fulfill three key re-
quirements: First, identity labels must be precise. That is, a label must uniquely
identify a running application. This implies that two different applications re-
ceive different labels. Moreover, it also means that a particular application re-
ceives the same label when executed multiple times on different hardware plat-
forms or with slightly different dynamic libraries. This is crucial in order to write
meaningful security polices that assign permissions on the basis of applications.

The second requirement is that identity labels must be secure. That is, it must
be impossible (or very difficult) for a malicious process to assume the identity
of a legitimate application. Otherwise, a malicious process can easily bypass
any security enforcement mechanism that is based on code identity simply by
impersonating an application that has the desired permissions.

The third requirement is that the implementation of the mechanism that
computes identity labels must be efficient. Program execution on current oper-
ating systems is highly dynamic, and events in which a process adds additional
code to its address space (typically in the form of dynamic libraries) are com-
mon. Also, the access permissions of code segments are changed surprisingly
often. Thus, any mechanism that aims to maintain an up-to-date view of the
running code will be invoked frequently, and, thus, must be fast.

2.2 System Design

To capture the dynamic identity of code, and to compute identity labels, we
propose an approach that dynamically tracks all executable code regions in a
process’ address space. Typically, these code regions contain the instructions of
the application code as well as the code sections of libraries, including those that
are dynamically loaded. Dymo computes a cryptographic hash over the content
of each code section, and it uses the set of hashes as the process’ identity label.

Precise Label Computation. Dymo ensures the precision of identity labels, even
in cases where an application loads slightly different sets of libraries on different
executions. This can happen when applications load certain libraries only when
the need arises, for example, when the user visits a web page that requires a
particular browser plug-in. In such cases, two identity labels for two executions
of the same application will contain an identical set of hashes for those libraries
that are present in both processes, while one label will have extra hashes for any
additional libraries that are loaded.

Typically, executable regions in a process’ address space correspond to code
sections of the binary or libraries. However, this is not always the case. For ex-
ample, malicious processes can inject code into running applications (e.g., using
Windows API functions such as VirtualAllocEx and WriteProcessMemory).
In addition, when a legitimate application has a security vulnerability (such as
a buffer overflow), it is possible to inject shellcode into the application, which
alters its behavior. Our identity labels encapsulate such code, because Dymo
keeps track of all executable memory regions, independent of the way in which
these regions were created.

Handling Dynamically Generated Code. An important difference from previous
systems that compute hashes of code regions to establish code identity is that
Dymo supports dynamically generated code. For this, one could simply choose
to hash code regions that are dynamically created (similar to regular program
code). Unfortunately, it is likely that such code regions change between program
executions. For example, consider a just-in-time compiler for JavaScript that

runs in a browser. Obviously, the code that is generated by this JIT compiler
component depends on the web pages that the user visits. Thus, hashes asso-
ciated with these code regions likely change very frequently. As a result, even
though the hash would precisely capture the generated code, its value is essen-
tially meaningless. For this reason, we decided not to hash dynamic code regions
directly. Instead, whenever there are dynamically created, executable memory
regions, we add information to the label that reflects the generated code and
the library responsible for it. The rationale is that we want to allow only cer-
tain known (and trusted) parts of the application code to dynamically generate
instructions. However, there are no restrictions on the actual instructions that
these regions can contain. While this opens a small window of opportunity for
an attacker, a successful exploit requires one to find a vulnerability in a library
that is permitted to generate code, and this vulnerability must be such that it
allows one to inject data into executable memory regions that this library has
previously allocated. This makes it very difficult for a malicious program or an
attacker to coerce a legitimate program to execute unwanted code.

Secure Label Computation. Identity labels must be secure against forging. This
requires that malicious processes cannot bypass or tamper with the component
that computes these labels. In other words, Dymo must execute at a higher
privilege than malicious code that may tamper with the label computation.

One possible way to implement Dymo is inside a virtual machine monitor
(VMM). This makes it easy to argue that the component is protected from the
guest OS and non-bypassable, and it would also be a convenient location to
implement our extensions, since we could use an open-source VMM. Another
way to implement Dymo is as part of the operating system kernel. In this case,
the threat model has to be somewhat weaker, because one must assume that
malicious processes only run with regular user (non-administrator) privileges.
Moreover, this venue requires more implementation effort given that there is no
source code available for Windows. However, on the upside, implementing Dymo
as part of the operating system kernel makes real-world deployment much more
feasible, since it does not require users to run an additional, trusted layer (such
as a virtual machine) underneath the OS.

For this work, we invested a substantial effort to demonstrate that the sys-
tem can be implemented as part of the Windows operating system. This was a
deliberate design decision that makes Dymo easier to deploy. We also believe
that it is reasonable to assume that the attacker does not have root privileges.
With the latest releases of its OS, Microsoft is aggressively pushing towards a
model where users are no longer authenticated as administrator but run as regu-
lar users [17]. Also, recent studies have shown that malware increasingly adapts
to this situation and runs properly even without administrator privileges [1].

Efficient Label Computation. Computing labels for programs should only incur
a small performance penalty. We add only a few instructions to the fast path in
the Windows memory management routines (which are executed for every page
fault). Moreover, the label computation is done incrementally; it only needs

to inspect the new, executable memory regions that are added to the process
address space. As a result, our label computation is fast, as demonstrated by
the performance overhead measured in our experiments (which are discussed in
Section 5).

3 System Implementation

In this section, we describe Dymo’s implementation in detail. In particular, we
discuss how our system extends the Windows XP kernel to track the executable
regions of a process and uses this information to compute identity labels.

Dynamically maintaining a process’ identity over the course of its execution
is a difficult problem. The first concern is that processes load dynamic link
libraries (DLLs) during run-time, which makes it difficult to predetermine all of
the code segments that will reside in a process’ address space. Second, processes
may allocate arbitrary memory regions with execute permission, for example,
when dynamically generating code. This is commonly done by packed malware,
which produces most of its code on-the-fly in an effort to thwart signature-based
detection, but also by just-in-time compilers that generate code dynamically.
A third issue concerns image rebasing. When the preferred load addresses of
two DLLs conflict, one has to be relocated, and all addresses of functions and
global variables must be patched in the code segment of the rebased DLL. This
poses a problem because we do not want the identities of two processes to differ
simply because of differences in DLL load order. Dymo is able to track a process’
identity in spite of these problems, as discussed in the following sections.

3.1 System Initialization

We assume that Dymo is installed on a clean machine and is executed before any
malicious process is running. Our system begins its operation by registering for
kernel-provided callbacks that are associated with process creation and image
loading (via PsSetCreateProcessNotifyRoutine and PsSetLoadImageNotify-

Routine, respectively) and hooking the NT kernel system services responsible
for allocating memory, mapping files, and changing the protection of a memory
region (these functions are NtAllocateVirtualMemory, NtMapViewOfSection,
and NtProtectVirtualMemory, respectively).

By registering these callbacks and hooks, Dymo can observe and track all
regions of memory from which a process could potentially execute code. Dymo
also hooks the page fault handler so that it will be alerted when a tracked mem-
ory region has been requested for execution. This allows for the inclusion of this
region into the identity label. This alert strategy makes use of hardware-enforced
Data Execution Prevention (DEP/NX) [16]. DEP/NX utilizes No eXecute hard-
ware support to disallow execute access to memory pages that have the NX bit
set. Note that only those DEP/NX violations that are due to our tracking tech-
nique are processed in the hooked page fault handler. The vast majority of page
faults are efficiently passed on to the original handler.

3.2 Identity Label Generation

An identity label encapsulates all memory regions (sets of consecutive memory
pages) of a process’ address space that are executed. Since each executable mem-
ory region is self-contained and can be modified independently, Dymo tracks
them individually through image hashes and region hashes.

Image and region hashes are cryptographic hashes (currently we use SHA-
1) that represent images (i.e., .exe files and DLLs) and executable memory
regions, respectively. The primary difference between the two types of hashes
is that the former refer to image code segments while the latter correspond to
all other executable memory allocations. We make this distinction because of
the differences in generating the two types of hashes, as discussed later. A basic
identity label is generated by aggregating all image and region hashes into a set.
In Section 4.2, we discuss an optimization step that allows us to compress the
size of identity labels significantly.

Since the label is a set of hashes, the constituent image and region hashes can
be individually extracted. As a result, the identity label is independent of the
exact layout of executable memory regions in the process’ address space (which
can change between executions). Furthermore, the identity label encapsulates
DLLs that are dynamically loaded according to the run-time behavior of a par-
ticular process execution (e.g., the dynamic loading of a JavaScript engine by a
browser when rendering a web page that contains JavaScript). The creation of
image and region hashes is described next.

Image Hashes. It is easiest to understand the operation of Dymo by walking
through the loading and execution of an application. After a process is started
and its initial thread is created – but before execution begins – Dymo is notified
through the process creation callback. At this point, Dymo constructs a process
profile to track the process throughout its execution.

Just before the initial thread starts executing, the image loading callback
is invoked to notify Dymo that the application’s image (the .exe file) and the
Ntdll.dll library have begun loading. Dymo locates the code segment for each
of these images in the process’ virtual address space and modifies the page pro-
tection to remove execute access from the region. Dymo then adds the original
protection (PAGE EXECUTE READ), the new protection (PAGE READONLY), and the
image base address to the process profile.

Ntdll.dll is responsible for loading all other required DLL images into
the process, so the initial thread is set to execute an initialization routine in
Ntdll.dll. Note that this marks the first user mode execution attempt in the
new process. Since Dymo has removed execute access from the Ntdll.dll code
segment, the execution attempt raises a DEP/NX exception, which results in a
control transfer to the page fault handler. Dymo’s page fault handler hook is
invoked first, which allows it to inspect the fault. Dymo determines that this is
the DEP/NX violation that it induced, and it uses the process profile to match
the faulting address to the Ntdll.dll code segment. Using the memory region

information in the process profile, Dymo creates the image hash that identifies
Ntdll.dll. It does this by computing a cryptographic hash of the code segment.

Note that special care must be taken to ensure that the image hash is not
affected by image rebasing. Dymo accomplishes this by parsing the PE header
and .reloc section of the image file to find the rebase fixup points and revert
them to their canonical values. That is, those addresses in a library’s code that
change depending on the library’s base address are overwritten with their initial
values, which are derived from the preferred base address. This is necessary
to avoid the generation of different hashes when the same library is loaded at
different addresses in different program executions.

The image hash is then added to the process profile. Finally, Dymo restores
the original page protection (PAGE EXECUTE READ) to the faulting region and
dismisses the page fault, which allows execution to continue in the Ntdll.dll

initialization routine.

Ntdll.dll consults the executable’s Import Address Table (IAT) to find re-
quired DLLs to load (and recursively consults these DLLs for imports) and maps
them into memory. Dymo is notified of these image loads through a callback,
and it carries out the processing described above for each library. The callback
is also invoked when DLLs are dynamically loaded during run-time, which en-
ables Dymo to process them as well. After loading, each DLL will attempt to
execute its entry point, a DEP/NX exception will be raised, and Dymo will add
an image hash for each DLL to the process profile as described above.

Region Hashes. Collecting image hashes allows Dymo to precisely track all of a
process’ loaded images. But there are other ways to introduce executable code
into the address space of a process, such as creating a private memory region or
file mapping. Furthermore, the page protection of any existing memory region
may be modified to allow write and/or execute access.

All of these methods eventually translate to requests to one of three sys-
tem services that are used for memory management – NtAllocateVirtual-

Memory, NtMapViewOfSection, or NtProtectVirtualMemory – which are hooked
by Dymo. When a request to one of these system services is made, Dymo first
passes it to the original routine, and then it checks whether the request resulted
in execute access being granted to the specified memory region. If so, Dymo
reacts as it did when handling loaded DLLs: it removes execute access from the
page protection of the region, and it adds the requested protection, the granted
protection, and the region base address to the process profile. When the sub-
sequent DEP/NX exception is raised (when code in the region is executed for
the first time), Dymo creates a region hash for the region. Unfortunately, gen-
erating a region hash is not as straightforward as creating an image hash (i.e.,
calculating a cryptographic hash over the memory region). This is because these
executable regions are typically used for dynamic code generation, and so the
region contents vary wildly over the course of the process’ execution. Handling
this problem requires additional tracking, which we describe next.

Handling Dynamic Code Generation. To motivate the problem created by dy-
namic code generation, consider the operation of the Firefox web browser. As
of version 3.5, Firefox uses a component called TraceMonkey [15] as part of its
JavaScript engine to JIT compile traces (hot paths of JavaScript code), and it
executes these traces in an allocated memory region. Since the generated code
will vary depending upon many factors, it is difficult to track and identify the
region (a similar issue arises with recent versions of Adobe’s Flash player and
other JIT compiled code). Nonetheless, care must be taken to effectively track
the JIT code region as it represents a writable and executable memory region
that may be the target of JIT spraying attacks [3].

To overcome this difficulty, Dymo tracks the images that are responsible
for allocating, writing, and calling into the region in question. The allocator is
tracked by traversing the user mode stack trace when the region is allocated
until the address of the code that requested the allocation (typically a call to
VirtualAlloc) is reached. Dymo tracks the writer by filtering write access from
the region, and, in the page fault handler, capturing the address of the instruction
that attempts the write. The caller is tracked by locating the return address
from the call into the region. In the page fault handler, this return address
can be found by following the user mode stack pointer, which is saved on the
kernel stack as part of the interrupt frame. Dymo creates a (meta) region hash
by concatenating the image hashes of the allocator, writer, and caller of the
region and hashing the result. In the case of Firefox TraceMonkey, a hash that
describes that the region belongs to its JavaScript engine housed in Js3250.dll

is generated.
Dynamic code rewriting is handled in a similar fashion. Code rewriting oc-

curs, for example, in the Internet Explorer 8 web browser when Ieframe.dll

rewrites portions of User32.dll to detour [11] functions to its dynamically gen-
erated code region. In this case, since User32.dll has already been registered
with the system and Dymo is able to track that Ieframe.dll has written to it,
the User32.dll image hash is updated to reflect its trusted modification.

Handling the PAGE EXECUTE READWRITE Protection. When a process makes a
call that results in a memory protection request that includes both execute
and write access, Dymo must take special action. This is because Dymo must
allow both accesses to remain transparent to the application. However, it must
also differentiate between the two, so that it can reliably create hashes that
encapsulate any changes to the region. The solution is to divide the PAGE -

EXECUTE READWRITE protection into PAGE READWRITE and PAGE EXECUTE READ

and toggle between the two.
To this end, Dymo filters the PAGE EXECUTE READWRITE request in a system

service hook and, initially, only grants PAGE READWRITE to the allocated region.
Later, if the application attempts to execute code in the region, a DEP/NX
exception is raised, and Dymo creates a hash as usual, but instead of granting
the originally requested access, it grants PAGE EXECUTE READ. In other words,
Dymo removes the write permission from the region so that the application
cannot update the code without forcing a recomputation of the hash.

If a fault is later incurred when writing to the region, Dymo simply tog-
gles the protection back to PAGE READWRITE and dismisses the page fault. This
strategy allows Dymo to compute a new hash on every execution attempt, while
tracking all writes and remaining transparent to the application.

3.3 Establishing Identity

So far, we have described how Dymo computes the identity labels of processes.
However, we have not yet discussed how these labels can be used to identify
applications.

Recall that a label is a set of hashes (one for each executable memory region).
One way to establish identity is to associate a specific label with an application.
A process is identified as this application only when their labels are identical;
that is, for each hash value in the process’ label, there is a corresponding hash
in the application’s label. We call this the strict matching policy.

A limitation of the strict matching policy is that it can be overly conservative,
rejecting valid labels of legitimate applications. One reason is that an application
might not always load the exact same set of dynamic libraries. This can happen
when a certain application feature has not been used yet, and, as a result, the
code necessary for this feature has not been loaded. As another example, take
the case of dynamic code generation in a web browser. When the user has not yet
visited a web page that triggers this feature, the label will not contain an entry
for a dynamically allocated, executable region created by the JIT compiler. To
address this issue, we propose a relaxed matching policy that accepts a process
label as belonging to a certain application when this process label contains a
subset of the hashes that the application label contains and the hash for the
main code section of the application is present.

4 Applications for Dymo

Dymo implements a dynamic code identity primitive. This primitive has a vari-
ety of applications, both on the local host and in the network. In this section, we
first describe a scenario where Dymo is used for performing local (host-based)
access control using the identity of processes. Then, we present an application
where Dymo is extended to label network connections based on the program
code that is the source of the traffic.

4.1 Application-Based Access Control

Modern operating systems typically make access control decisions based on the
user ID under which a process runs. This means that a process generally has
the same access rights as the logged-in user. Dymo can be used by the local
host to enable the OS to make more precise access control decisions based on
the identity of applications. For example, the OS could have a policy that limits
network access to a set of trusted (whitelisted) applications, such as trusted web

browsers and e-mail clients. Another policy could impose restrictions on which
applications are allowed to access a particular sensitive file (similar to sealed
storage). Because Dymo precisely tracks the dynamic identity of a process, a
trusted (but vulnerable) application cannot be exploited to subvert an access
control policy. In particular, when a trusted process is exploited, its identity
label changes, and, thus, its permissions are implicitly taken away.

To use application-based access control, a mechanism must be in place to dis-
tribute identity labels for trusted applications, in addition to a set of permissions
that are associated with these applications. The most straightforward approach
for this would be to provide a global repository of labels so that all hosts that
run Dymo could obtain identity labels for the same applications. We note that
global distribution mechanisms already exist (such as Microsoft Update), which
Dymo could take advantage of. This would work well for trusted applications
that ship with Windows, and they could be equipped with default privileges.

Furthermore, it is also straightforward for an administrator to produce a
whitelist of identity labels for applications that users are allowed to run, for
example, in an enterprise network. To this end, one simply needs to run an
application on a system where Dymo is installed, exercising the main func-
tionalities so that all dynamic libraries are loaded. The identity label that our
system computes for this application can then be readily used and distributed
to all machines in the network. In this scenario, an administrator can restrict
the execution of applications to only those that have their labels in a whitelist,
or specific permissions can be enabled on a per-application basis.

One may argue that during this training period it may not be feasible to fully
exercise an application so as to guarantee that all possible dynamic libraries are
loaded. The problem is that, after Dymo is deployed, untrained paths of execu-
tion could lead an application to load unknown libraries that would invalidate
the application’s identity label, resulting in a false positive. We believe that such
problems can be mitigated by focused training that is guided by the users’ in-
tended workflow. Furthermore, an administrator may accept a small number of
false positives as a trade-off against spending more time to reveal an application’s
esoteric functionality that is rarely used.

4.2 Dymo Network Extension

In this section, we describe our implementation of an extension to Dymo to
inject a process’ identity label into the network packets that it sends. This allows
network entities to learn the provenance of the traffic. An example scenario that
could benefit from such information is an enterprise deployment.

In a homogeneous enterprise network, most machines will run the same op-
erating system with identical patch levels. Moreover, a centralized authority can
enforce the software packages that are permissible on users’ machines. In this
scenario, it is easy to obtain the labels for those applications and correspond-
ing libraries that are allowed to connect to the outside Internet (e.g., simply by
running these applications under Dymo and recording the labels that are ob-
served). These labels then serve as a whitelist, and they can be deployed at the

network egress points (e.g., the gateway). Whenever traffic with an invalid label
is detected, the connection is terminated, and the source host can be inspected.

By analyzing labels in the network, policies can be enforced at the gateway,
instead of at each individual host, which makes policy management simpler and
more efficient. Furthermore, the Dymo network extension allows for other traffic
monitoring possibilities, such as rate limiting packets from certain applications
or gathering statistics pertaining to the applications that are responsible for
sending traffic through the network.

To demonstrate how identity labels can be used in the network, we imple-
mented the Dymo network extension as a kernel module that intercepts out-
bound network traffic to inject all packets with the identity label of the origi-
nating process. We accomplish this by injecting a custom IP option into the IP
header of each packet, which makes it easy for network devices or hosts along
the path to analyze the label. In addition, as an optimization, the label is only
injected into the first packet(s) of a TCP connection (i.e., the SYN packet).

The injector, a component that is positioned between the TCP/IP transport
driver and the network adapter, does the injection to ensure that all traffic is
labeled. A second component, called the broker, obtains the appropriate identity
label for the injector. These components are discussed next.

The Injector. The injector component is implemented as a Network Driver
Interface Specification (NDIS) Intermediate Filter driver. It sits between the
TCP/IP Transport Provider (Tcpip.sys) and the network adapter, which al-
lows it to intercept all IP network traffic leaving the host. Due to the NDIS
architecture, the injection component executes in an arbitrary thread context.
Practically speaking, this means that the injector cannot reliably determine on
its own which process is responsible for a particular network packet. To solve this
problem, the injector enlists the help of a broker component (discussed below).

When a packet is passed down to the injector, it inspects the packet headers
and builds a connection ID consisting of the source and destination IP addresses,
the source and destination ports, and the protocol. The injector queries the
broker with the connection ID and receives back a process identity label. The
label is injected into the outbound packet as a custom IP option, the appropriate
IP headers are updated (e.g., header length and checksum), and the packet is
forwarded down to the network adapter for delivery.

The Broker. The broker component assists the injector in obtaining appropri-
ate identity labels. The broker receives a connection ID from the injector and
maps it to the ascribed process. It then obtains the label associated with the
given process and returns it to the injector.

The broker is implemented as a Transport Driver Interface (TDI) Filter
driver. It resides above Tcpip.sys in the transport protocol stack and filters
the TDI interfaces used to send packets. Through these interfaces, the broker is
notified when a process sends network traffic, and it parses the request for its
connection ID. Since the broker executes in the context of the process sending

the network traffic, it can maintain a table that maps connection IDs to the
corresponding processes.

Label Size Optimization. Identity labels, which store all image and region
hashes for a process, can become large. In fact, they might grow too large to fit
into the IP option field of one, or a few, network packets. For example, consider
the execution of Firefox. It is represented by 87 image and region hashes, each
of which is a 20 byte hash value, which results in an identity label size of 1.74
KB. To compress identity labels before embedding them into network packets,
Dymo uses Huffman encoding to condense image and region hashes into image
and region codes. Dymo then simply concatenates the resulting image and region
codes to generate the label that is sent over the network.

The Huffman codes are precomputed from a global input set which includes
all trusted applications and DLLs (with their different versions), with shorter
codes being assigned to more popular (more frequently executed) images. The
codes are stored in a lookup table when Dymo begins operation. To generate
a Huffman code for an image hash, the system uses the computed hash of the
image to index into the lookup table and obtain the corresponding Huffman
code. If the lookup fails, Dymo generates an UNKNOWN IMAGE code to describe
the image; thus, untrusted or malicious images are easily detected. To generate
a region code, Dymo uses the hashes of the allocator, writer, and caller of the
region to compute a hash to index into the lookup table. If the lookup fails,
Dymo generates an UNKNOWN REGION code to describe the region.

In the current implementation, Huffman codes vary in length from 6 to 16
bits. When using optimized codes, Dymo generates an identity label for Firefox
that is 74 bytes, which is 4.25% of its size in the unoptimized case. Note that
the maximum size of the IP option is fixed at 40 bytes. For identity labels that
exceed this 40 byte limit, we split the label over multiple packets.

5 Evaluation

We evaluated Dymo on three criteria that address the system requirements
discussed in Section 2.1: the precision of the identity labels it creates, its ability to
correctly reflect changes to the identity label when a process has been tampered
with, and its impact on application performance.

5.1 Label Precision

In order for an identity label to be meaningful, it must uniquely identify the
running application that it represents. That is to say, two different applications
should receive different labels, and the same application should receive the same
label when it is executed multiple times on the same or different hosts. We say
that a label meeting these criteria is precise.

To evaluate the precision of Dymo’s identity labels, we deployed the Win-
dows XP SP3 operating system on three different platforms: a virtual machine

running under VMware Fusion 2 on a Mac OS X host, a virtual machine running
under VirtualBox 3.1 on an Ubuntu host, and a standard, native installation on
bare metal. We then created a test application suite of 107 executables taken
from the Windows System32 directory. To conduct the experiment, we first ob-
tained our database of identity labels using the training method described in
Section 4.1, that is, by simply running the applications on the test platforms
and storing the resulting labels. We then ran each application from the test
suite on every platform for ten seconds and for three iterations. In addition, we
performed similar tests for Internet Explorer, Firefox, and Thunderbird, which
are examples of large and complex applications. For these programs, instead of
only running the applications for ten seconds, we simulated a typical workflow
that involved browsing through a set of websites – including sites containing
JavaScript and Flash content – with Internet Explorer and Firefox and perform-
ing mail tasks in Thunderbird.

We found that in all cases, the generated identity labels were precise. There
were small differences in the dynamic loading of a few DLLs in some of the
processes, but according to the relaxed matching policy for establishing identity
as described in Section 3.3, all processes were accepted as belonging to their
corresponding applications. More specifically, for 99 of the 107 programs (93%),
as well as for Firefox and Thunderbird, the generated labels were identical on
all three platforms. In all other cases, the labels were identical among the three
runs, but sometimes differed between the different platforms. The reason for
the minor differences among the labels was that a particular library was not
present (or not loaded) on all platforms. As a result, the applications loaded a
different number of libraries, which led to different labels. For six programs, the
problem was that the native host was missing an audio driver, and our test suite
contained several audio-related programs such as Mplay32.exe, Sndrec32.exe,
and Sndvol32.exe. In one case, the VirtualBox platform was missing DLLs for
AppleTalk support. In the final two cases (Magnify.exe and Internet Explorer),
the VirtualBox environment did not load Msvcp60.dll.

Our experiments demonstrate that identity labels are precise across platforms
according to the relaxed matching policy. In some special cases, certain libraries
are not present, but their absence does not change the fundamental identity of
the application.

5.2 Effect of Process Tampering

An identity label encodes the execution history of a process. We can leverage this
property for detecting suspicious behavior of otherwise benign processes when
they are tampered with by malware or exploits.

Tampering by Malware. We identified three malware samples that perform
injection of code into the address space of other running processes. The first
sample was a Zeus bot that modified a running instance of Internet Explorer by
injecting code into Browseui.dll and Ws2help.dll. The second sample was a

Korgo worm that injected a remote thread into Windows Explorer and loaded 19
DLLs for scanning activity and communication with a Command and Control
(C&C) server. The third sample was a suspicious program called YGB Hack
Time that was detected by 33 out of 42 (79%) antivirus engines in VirusTotal.
YGB injected a DLL called Itrack.dll into most running processes, including
Internet Explorer.

We executed the three samples on a virtual machine with Dymo running. The
identity labels of the target applications changed after all three malware samples
were executed and performed their injection. This demonstrates that Dymo is
able to dynamically update a process’ identity label according to changes in its
execution.

Tampering by Exploits. An alternative way to tamper with a process’ execu-
tion is through an exploit that targets a vulnerability in the process. Two com-
mon attack vectors are the buffer overflow exploit and drive-by download attack.
To demonstrate Dymo’s ability to detect such attacks, we used the Metasploit
Framework to deploy a VNC server that targets a buffer overflow vulnerability
in RealVNC Client and a web server to simulate the Operation Aurora drive-
by download exploit [24]. For both attacks, we configured Metasploit to use a
sophisticated Reflective DLL Injection exploit payload [5] that allows a DLL
to load itself into the target address space without using the facilities of the
Ntdll.dll image loader. This makes the injection stealthier because the DLL
is not registered with the hosting process (e.g., the DLL does not appear in the
list of loaded modules in the Process Environment Block).

We deployed our attack VNC server and web server and navigated to them
using a vulnerable version of RealVNC Client and Internet Explorer, respectively.
The identity labels changed for both vulnerable applications after the attack
because of the execution of code in RealVNC Client’s stack, Internet Explorer’s
heap, and the DLL injected into the address space of both. This demonstrates
that Dymo is able to update a process’ identity label even in the face of a
sophisticated attack technique designed to hide its presence.

5.3 Performance Impact

Dymo operates at a low level in the Windows XP kernel and must track when
a process loads DLLs and makes memory allocation or protection change re-
quests. Moreover, the system adds some logic to the page fault handler. Since
these kernel functions are frequently invoked, care must be taken to maintain an
acceptable level of performance.

Typically, a process will perform most, if not all, of the code loading work
very early in its lifetime. Figure 1 shows an example of DLL loading over time for
Internet Explorer, Firefox, and Thunderbird (only load-time DLLs are included).
Note that 95%, 93%, and 97% of the DLLs were loaded within one second after
launching Internet Explorer, Firefox, and Thunderbird, respectively.

The loading of DLLs results in the most work (and overhead) for Dymo, be-
cause it means that the system has to compute hashes for new code pages. Thus,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

p
o

rt
io

n
 o

f
D

L
L

s

Time (seconds)

IE
Firefox

Thunderbird

Fig. 1. DLL loading over time

the overhead during startup constitutes a worst case. To measure the startup
overhead, we ran Internet Explorer, Firefox, and Thunderbird on the native plat-
form, and we measured the time until each application’s main window responded
to user input with and without Dymo. We used the PassMark AppTimer tool
to do these measurements. Table 1 shows the results. It can be seen that, with
our system running, the startup times for Internet Explorer, Firefox, and Thun-
derbird increased by 80%, 41%, and 31%, respectively. While the overhead for
Internet Explorer seems high at first glance, the browser still starts in less than
one second. We feel that this is below the threshold of user awareness; therefore,
it is an acceptable overhead. We speculate that the higher overhead of Internet
Explorer can be attributed to its multi-process, Loosely-Coupled IE (LCIE) ar-
chitecture [23], which results in Dymo duplicating its initialization efforts over
the frame and tab processes.

Table 1. Startup times (in milliseconds)

Application Without Dymo With Dymo Overhead

Internet Explorer 447 804 80%
Firefox 450 634 41%

Thunderbird 799 1047 31%

In addition to the worst-case overhead during application startup, we were
also interested in understanding the performance penalty due to our modifica-
tions to the memory management routines and, in particular, the page fault
handler. To this end, we wrote a tool that first allocated a 2 GB buffer in mem-
ory and then stepped through this buffer, touching a byte on each consecutive
page. This caused many page faults, and, as a result, it allowed us to measure the
overhead that a memory-intensive application might experience once the code
regions (binary image and libraries) are loaded and the appropriate identity la-

bel is computed. We ran this test for 20 iterations and found that Dymo incurs
a modest overhead of 7.09% on average.

6 Security Analysis

In this section, we discuss the security of our proposed identity label mechanism.
In our threat model, we assume that the attacker controls a malicious process
and wants to carry out a security sensitive operation that is restricted to a set
of applications with known, trusted identities (labels). Similarly, the attacker
might want to send a network packet with the label of a trusted process.

The malicious process could attempt to obtain one of the trusted labels. To
this end, the attacker would have to create executable memory regions that hash
to the same values as the memory regions of a trusted process. Because we use
a strong hash function (SHA-1), it is infeasible for the attacker to allocate an
executable region that hashes to a known value. It is also not possible to simply
add code to a trusted program in order to carry out a sensitive operation on the
attacker’s behalf (a kind of confused deputy attack [10]). The reason is that any
added executable region would contribute an additional, unknown hash value to
the identity label, thereby invalidating it.

A malware process could also attempt to tamper with the data of a process
and indirectly modify its operations so that it could carry out malicious activity.
This is a more difficult attack, and its success depends on the normal function-
ality that is implemented by the targeted victim program. The easiest way to
carry out this attack is via a debugger, which allows easy manipulation of the
heap or stack areas of the victim application. We prevent this attack by disabling
access to the Windows debugging API for all user processes when our system is
running. We believe that these APIs are only rarely used by regular users, and
it is reasonable to accept the reduced functionality for non-developers.

Another way to tamper with the execution of an application without in-
jecting additional code is via non-control-data attacks. These attacks modify
“decision-making data” that might be used by the application while carrying
out its computations and interactions. Previous work [4] has shown that these
attacks are “realistic threats,” but they are significantly more difficult to per-
form than attacks in which arbitrary code can be injected. Moreover, for these
attacks to be successful, the malware has to find an application vulnerability that
can be exploited, and this vulnerability must be suitable to coerce the program
to run the functionality that is intended by the malware author. Our current
system does not specifically defend against these attacks. However, there are
a number of operating system improvements that make exploits such as these
significantly more difficult to launch. For example, address space layout ran-
domization (ASLR) [2] provides a strong defense against attacks that leverage
return-oriented programming (advanced return-into-libc exploits) [22]. Because
our technique is compatible with ASLR, our system directly benefits from it and
will likely also profit from other OS defenses. This makes this class of attacks
less of a concern.

7 Related Work

The goal of our system is to track the run-time identity of executing processes.
This objective is related to previous contributions that focus on identifying local
and remote applications.

Local Identification. Patagonix [14] is a hypervisor-based system that tracks
all executing binaries on a host with the goal of detecting the presence of pro-
cesses that may be hidden by a rootkit. The system runs the target host in a
virtual machine and provides a secure channel to identify and list the host’s
running processes in a separate trusted VM.

The technique used by Patagonix to identify executing processes is similar to
ours in that both systems leverage NX hardware support to detect code execu-
tion. However, there are some disadvantages to the Patagonix approach: First,
the hypervisor must bridge a semantic gap. For example, it cannot determine
when processes terminate or when requests are made to change page permis-
sions. To combat this, the system periodically refreshes its state by remarking
all pages as non-executable. This adds more overhead as all subsequent execu-
tions of pages that are already monitored will induce spurious page faults that
will have to be checked. Clearly, there is a trade-off between this overhead and
the fidelity of Patagonix’s view of the current state of the operating system. Fur-
thermore, the refresh interval offers a potential vulnerability to attack. Second,
Patagonix does not support JIT compiled code. It can detect and report the
presence of the JIT engine, but it ignores the JIT code itself. In contrast, Dymo
handles these issues.

The problems with static code identity that we have described are closely
related to those surrounding data integrity tools, such as Tripwire [12]. This
has led to the development of various program-level anomaly detection systems
that focus on characterizing application behavior, typically by monitoring sys-
tem calls [6] and their arguments [13]. Likewise, work in the area of digital
rights management (DRM) has recognized how brittle static hashing is for con-
tent identification purposes, and so more robust hashing mechanisms have been
proposed [8].

Remote Identification. Sailer et al. present an approach to integrity measure-
ment that uses a Trusted Platform Module (TPM) to identify applications for
remote attestation [20]. The hashes are computed at application load-time, so
the identity measurements are fundamentally static. Dymo, on the other hand,
implements a dynamic code identity primitive that also measures changes to the
process during run-time. Haldar et al. argue that traditional remote attestation
techniques attest to the (static) identity of a binary, when, in fact, it is an at-
testation to the application’s behavior that is desired. Their proposal, semantic
remote attestation [9], is complementary to ours.

Network access control systems regulate hosts’ access to the network by en-
suring that they abide by a given policy (e.g., the hosts are fully patched and

are running updated antivirus software). Policies are enforced either by agents
on the hosts themselves or in the network [7].

Pedigree [19] is an example of a distributed information flow tracking system
that uses taint sets to record interactions between processes and resources, and
it attaches these taint sets to network packets in order to exchange information
between hosts. Distributed information flow tracking systems are related to our
network extension to Dymo, but the semantics of labels is different.

8 Conclusions

This paper presents Dymo, a system that provides a dynamic code identity
primitive that enables tracking of the run-time integrity of a process. Our sys-
tem deploys a host-based monitoring component to ensure that all code that
is associated with the execution of an application is reliably tracked. By dy-
namically monitoring the identity of a process in a trustworthy fashion, Dymo
enables an operating system to enforce precise application-based access control
policies, such as malware detection, application whitelisting, and providing dif-
ferent levels of service to different applications. In addition, we implemented
an application that extends Dymo so that network packets are labeled with
information that allows one to determine which program is responsible for the
generation of the traffic. We have developed a prototype of our approach for the
Windows XP operating system, and we have evaluated it in a number of realistic
settings. The results show that our system is able to reliably track the identity
of an application while incurring an acceptable performance overhead. Future
work will focus on extending this approach to other platforms (such as Linux)
and on developing sophisticated network-level policy enforcement mechanisms
that take advantage of our identity labels.

Acknowledgments. This work was partially supported by ONR grant N0001-
40911042, ARO grant W911NF0910553, NSF grants CNS-0845559 and CNS-0-
905537, and Secure Business Austria.

References

1. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A View on Current
Malware Behaviors. In: 2nd USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats (2009)

2. Bhatkar, S., DuVarney, D., Sekar, R.: Address Obfuscation: An Efficient Approach
to Combat a Broad Range of Memory Error Exploits. In: 12th USENIX Security
Symposium (2003)

3. Blazakis, D.: Interpreter Exploitation. In: 4th USENIX Workshop on Offensive
Technologies (2010)

4. Chen, C., Xu, J., Sezer, E., Gauriar, P., Iyer, R.: Non-Control-Data Attacks Are
Realistic Threats. In: 14th USENIX Security Symposium (2005)

5. Fewer, S.: Reflective DLL Injection. Tech. rep., Harmony Security (2008)

6. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for UNIX
Processes. In: 17th IEEE Symposium on Security and Privacy (1996)

7. Frias-Martinez, V., Sherrick, J., Stolfo, S.J., Keromytis, A.D.: A Network Access
Control Mechanism Based on Behavior Profiles. In: 25th Annual Computer Secu-
rity Applications Conference (2009)

8. Haitsma, J., Kalker, T., Oostveen, J.: Robust Audio Hashing for Content Identi-
fication. In: 2nd International Workshop on Content-Based Multimedia Indexing
(2001)

9. Haldar, V., Chandra, D., Franz, M.: Semantic Remote Attestation A Virtual Ma-
chine Directed Approach to Trusted Computing. In: 3rd USENIX Virtual Machine
Research and Technology Symposium (2004)

10. Hardy, N.: The Confused Deputy. Operating Systems Review 22(4), 36–38 (1988)
11. Hunt, G., Brubacher, D.: Detours: Binary Interception of Win32 Functions. In: 3rd

USENIX Windows NT Symposium (1999)
12. Kim, G.H., Spafford, E.H.: The Design and Implementation of Tripwire: A File

System Integrity Checker. In: 2nd ACM Conference on Computer and Communi-
cations Security (1994)

13. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the Detection of Anomalous
System Call Arguments. In: 8th European Symposium on Research in Computer
Security (2003)

14. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor Support for Identifying Covertly
Executing Binaries. In: 17th USENIX Security Symposium (2008)

15. Mandelin, D.: An Overview of TraceMonkey (July 2009), http://hacks.mozilla.
org/2009/07/tracemonkey-overview/

16. Microsoft Corporation: A detailed description of the Data Execution Prevention
(DEP) feature (September 2006), http://support.microsoft.com/kb/875352

17. Microsoft Corporation: Windows Vista Application Development Requirements for
User Account Control (UAC) (April 2007), http://msdn.microsoft.com/en-us/
library/aa905330.aspx

18. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Commodity Com-
puters. In: 31st IEEE Symposium on Security and Privacy (2010)

19. Ramachandran, A., Bhandankar, K., Tariq, M.B., Feamster, N.: Packets with
Provenance. Tech. Rep. GT-CS-08-02, Georgia Institute of Technology (2008)

20. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a
TCG-based Integrity Measurement Architecture. In: 13th USENIX Security Sym-
posium (2004)

21. Saltzer, J.H., Schroeder, M.D.: The Protection of Information in Computer Sys-
tems. Proceedings of the IEEE 63(9), 1278–1308 (1975)

22. Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc with-
out Function Calls (on the x86). In: 14th ACM Conference on Computer and
Communications Security (2007)

23. Zeigler, A.: IE8 and Loosely-Coupled IE (LCIE) (March 2008), http://blogs.

msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx

24. Zetter, K.: Google Hack Attack Was Ultra Sophisticated, New Details Show (Jan-
uary 2010), http://www.wired.com/threatlevel/2010/01/operation-aurora/

