
Nexat: A History-Based Approach to Predict Attacker
Actions

Casey Cipriano
UCSB

CS Department
Santa Barbara, CA, USA
ccipriano@gmail.com

Ali Zand
UCSB

CS Department
Santa Barbara, CA, USA
zand@cs.ucsb.edu

Amir Houmansadr
UIUC

ECE Department
Urbana, IL, USA

ahouman2@illinois.edu

Christopher Kruegel
UCSB

CS Department
Santa Barbara, CA, USA
chris@cs.ucsb.edu

Giovanni Vigna
UCSB

CS Department
Santa Barbara, CA, USA
vigna@cs.ucsb.edu

ABSTRACT

Computer networks are constantly being targeted by different at-
tacks. Since not all attacks are created equal, it is of paramount im-
portance for network administrators to be aware of the status of the
network infrastructure, the relevance of each attack with respect to
the goals of the organization under attack, and also the most likely
next steps of the attackers. In particular, the last capability, attack
prediction, is of the most importance and value to the network ad-
ministrators, as it enables them to provision the required actions to
stop the attack and/or minimize its damage to the network’s assets.
Unfortunately, the existing approaches to attack prediction either
provide limited useful information or are too complex to scale to
the real-world scenarios.

In this paper, we present a novel approach to the prediction of
the actions of the attackers. Our approach uses machine learning
techniques to learn the historical behavior of attackers and then, at
the run time, leverages this knowledge in order to produce an esti-
mate of the likely future actions of the attackers. We implemented
our approach in a prototype tool, called Nexat, and validated its ac-
curacy leveraging a dataset from a hacking competition. The eval-
uations show that Nexat is able to predict the next steps of attackers
with very high accuracy. In particular, Nexat achieves a 94% accu-
racy in predicting the next actions of the attackers in our prototype
implementation. In addition, Nexat requires little computational
resources and can be run in real-time for instant prediction of the
attacks.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-

rity and protection; C.2.3 [Computer-Communication Networks]:
Network Operations—Network monitoring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’11 Dec. 5-9, 2011, Orlando, Florida USA
Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

General Terms

Algorithms, Design, Security

Keywords

Attack prediction, situation awareness, machine learning

1. INTRODUCTION
Computer networks are constantly under various attacks. Net-

work administrators deploy intrusion detection systems (IDS) in
order to detect the occurrence of the events that may be part of an
attack [1, 19, 24]. Unfortunately, while intrusion detection sys-
tems provide useful information about the attack-related events,
they provide little information about the network’s situation before
and after any of the attacks. In order to better provision and re-
spond to the attacks a network administrator needs the answers to
the following questions: how are different events related to an at-
tack? what is the impact of an attack on the network? and, the most
important, what are the most likely next actions of the attackers?
The answers to these questions and other similar questions provide
a high-level understanding of the security situation of the computer
networks, also referred to as situation awareness. Situation aware-
ness has long been referred to as an important and critical aspect for
cyber-defense [7, 6, 10, 23, 3, 26, 20, 14]. Endsley [6] proposes a
general definition for situation awareness as "the perception of the
elements of the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their status
in the near future." With respect to the cyber-defense scenario, situ-
ation awareness tries to contextualize cyber-attacks with respect to
the network infrastructure and the mission flows in order to enable
a network administrator to prioritize certain preventative measures
and also determine the severity of different attacks [25]. Further-
more, situation awareness can provide estimates of the likely next
steps of an attacker, assisting a network administrator in using ap-
propriate preventative approaches instead of just reactive ones [21,
22].

Predicting the next actions of the attackers is an important, yet
difficult, aspect of situation awareness. Existing approaches for at-
tack prediction either provide limited predictive information [15,
21, 13] or are complex and can not be utilized for large-scale sce-
narios [18, 8, 22, 28]. As an example, Qin et al. uses Granger
causality analysis in order to compute precursor alerts [21]. This
approach provides limited accuracy in attack prediction as its per-

formance is very sensitive to the presence of unrelated background
alerts. As another example, Geib et al. provide a plan prediction
scheme that uses pre-determined attacker plans in order to predict
future attacks [8]. This approach is not scalable, as it does not per-
form in a fully automated manner and requires continuous inputs
from the network administrators in order to perform the predic-
tions. Therefore, there is the need for effective situation awareness
tools that provide attack prediction capabilities that are not only
accurate, but also scalable to large-scale networks.

In this paper, we leverage machine learning to predict the next
steps of attacks based on histories of previous attacks. We imple-
mented our approach in a tool called Nexat, which is the focus of
this paper. Nexat uses machine learning techniques to learn the
past behavior of the attackers, and then uses this knowledge to
predict the next steps of future attacks in real-time. More specif-
ically, Nexat consists of three operational phases: the data extrac-
tion phase, the training phase, and the prediction phase. During the
data extraction phase, Nexat extracts some information from the
alerts previously generated by intrusion detection systems. Nexat

uses this extracted information during the training phase in order to
generate a knowledge base about the attackers’ behavior. Finally,
Nexat uses the generated models of the network and the attackers to
make predictions on the next steps of a live stream of attack alerts.
The attack predictions provided by Nexat can be used by decision
makers, e.g., network administrators, to devise efficient defensive
actions and to estimate the impact of a future attack on the critical
assets of the organization.

We evaluated the performance of Nexat using a prototype imple-
mentation on a unique database of attack alerts. The alert database
is collected by an intrusion detection system during a large-scale
hacking competition, where a number of hacker teams tried to com-
promise the same target network by taking multiple steps. Our eval-
uation shows that Nexat is able to learn the attacking behavior of
the attackers and use it to predict their future actions efficiently. In
particular, by learning the attack histories of 32 teams Nexat was
able to predict the actions of another hacker team with an average
accuracy of 94%.

The rest of this paper is organized as follows: in Section 2,
we give a detailed description of our attack prediction algorithm,
Nexat. Section 3 evaluates a prototype implementation of Nexat by
discussing its prediction efficiency. In Section 4 we discuss some
of the related work. Finally, the paper is concluded in Section 5.

2. NEXAT:HISTORY-BASEDATTACKPRE-

DICTION
In this section, we describe the design of Nexat, a tool that we

develop for predicting attackers’ likely next steps. Nexat uses a
machine learning technique to predict the attacker actions based on
the activity history of the attackers. More specifically, Nexat’s op-
eration can be divided into three main phases: the data extraction
phase, the training phase, and the prediction phase. Before describ-
ing these steps, we first provide a formal definition of some of the
terms used later. Also, Table 1 summarizes all of the elements used
in the design of Nexat, e.g., lists and hash tables, along with their
symbols and definitions.

DEFINITION 1. (Alert) An alert is a set of information about a

suspicious network event being observed and reported by an IDS

system.

The set of information included in an alert depends on the type of
the reporting IDS system; common examples of alert information
are the “source address“ and the “destination address“ of the net-
work flow associated with the event, and the time of its occurrence.

DEFINITION 2. (Attack session) An attack session is a sequence
of alerts whose properties satisfy certain conditions. We define an

alert A to be part of an attack session S if at least one of these

properties holds:

• the destination of alert A is the same as the destination of a

previous alert in S,

• the source of alert A is the same as the source of a previous

alert in S,

• the source of alert A is a destination of a previous alert in S.

In addition, A should lie within a time window of w seconds from

the last alert in S.

The properties used in specifying the attack sessions are meant to
capture three common attack patterns, namely, one-to-many, many-
to-one, and island-hopping. A single source attacking many unique
targets is classified as a one-to-many pattern, whereas multiple sources
attacking a single target is referred to as a many-to-one attack. Fi-
nally, island-hopping occurs when an attacker uses a previously-
compromised target to attack another target. By looking for each
of these attack patterns we establish a basis for finding all of the
alerts that belong to a specific attack.

The data extraction phase takes as input a training set containing
a history of previously-observed alerts. Using these alerts, Nexat
extracts a list of all of the possible attack sessions by grouping to-
gether the alerts as will be described later. The rational behind this
classification is that alerts pertaining to the same attack session are
very likely to be part of the same attack, and, hence, they are very
likely to happen simultaneously in the future. During the training
phase, Nexat analyzes the extracted attack sessions to identify the
co-occurrence relationship amongst different alerts being involved
in these sessions. This results in a knowledge base for Nexat which
is used during the prediction phase to probabilistically predict the
next actions of an attacker, once a live stream of alerts are being
observed by an intrusion detection system. In the following, we
provide the detailed description of these three phases.

2.1 Data Extraction Phase
In this phase, Nexat extracts attack sessions out of a list of alerts

that are reported by one or more IDSs. This is done in two steps:
generating the list of alerts, and extracting attack sessions from the
alerts list.

Generating the alerts list

The current implementation of Nexat takes Snort alerts1 as input
and extracts four of its attributes, i.e., the name of the attack, the
source address, the destination address, and the time the alert was
generated. Table 2 shows some sample alerts generated by a Snort
IDSs. Nexat constructs and maintains an alerts list that keeps the
alerts collected by the IDSs in an ascending order of time. We
assume that multiple IDSs are time-synchronized. Table 3 shows a
sample alerts list. For the sake of simplicity, we use pseudonyms
for the name of the alerts and also for the source and destination IP
addresses.

Extracting the attack sessions

For any alert A in an alerts list AL, Nexat generates an attack
session S initiating fromA as defined in Definition 2. More specif-
ically, in order to add an alert A1 to an existing attack session, one

1The code can easily be extended to take inputs from other IDSs as
well.

Table 1: Different elements used in Nexat.

Name Symbol Description

Alert A An alert as defined in Definition 1.

Alerts list AL
A list that contains the list of alerts collected
from an IDS in ascending order of time.

Attack session S An attack session as defined in Definition 2.

List of attack sessions H
A hash table keyed by alerts, containing the
corresponding attack sessions.

Trained dataset T
A hash table that contains the empirical probabilities
trained during the training phase.

Power-set of an alert P (A) The power-set corresponding to an alert as defined in the text.

Results list R(T, I)
A hash table that provides predictions on the next alert of
an attack stream of I based on the trained dataset T .

Table 2: Example alerts generated by an Snort IDS.

Pseudonym Description

A DNS named authors attempt
B (http_inspect) OVERSIZE REQUEST-URI DIRECTORY
C SNMP trap TCP
D WEB-CGI bb-hist.sh access
E MISC source port 53 to <1024
F BACKDOORWordpress backdoor feed.php code execution attempt

Table 3: An example list of alerts. The source and destination ad-
dresses are replaced by pseudonyms of the hosts.

Alert name
Attribute

Source address Destination address Time

A 9 6 1

G 2 4 2

B 8 7 4

D 7 1 7

K 3 4 8

J 2 5 9

E 1 6 10

of these three requirements should be met: A1’s destination ad-
dress is the same as the destination of an alert existing in S, A1’s
source is the same as the source address of an alert in S, or A1’s
source is the same as the destination address of an alert in S. Nexat
uses a sliding time window, w, for performing such correlation.
This algorithm, GetSession(A∈ AL,AL), is depicted in Al-
gorithm 2.1. GetSession(A∈ AL,AL) goes over an alerts list
AL, being sorted in ascending order of time, to find all of the ex-
isting attack sessions corresponding to an alert A ∈ AL. For any
instance of such an attack session, S, GetSession performs the
following steps:

• For the attack session S, GetSession creates and main-
tains two lists SourceList(S) and TargetList(S), which
contain the possible source address and destination addresses
of the future alerts of S, respectively.

• GetSession traverses the alerts list AL in descending or-

der of time starting from A in order to find and append re-
lated alerts to S. For any alert A1 which lies in a window w
from the last alert in S, GetSession adds it to S if either
A1’s source is in SourceList(S) or A1’s destination is in
TargetList(S).

• For any alert A1 that is added to an attack session S, the
destination ofA1 is added to TargetList(S) and the source
of A1 is added to both SourceList(S) and TargetList(S)
lists (this enables Nexat to find the three possible types of at-
tack, namely, one-to-many, many-to-one, and island-hopping,
as mentioned before).

• GetSession closes S if it does not find another alert from
AL that satisfies the mentioned properties.

Nexatmaintains a list of attack sessions,H , which is a hash table
that is indexed by alert names. H stores lists of attack session sets
corresponding to each alert. Upon finding an attack session S for an
alertA ∈ AL, as described above, Nexat appends S to the line ofH
corresponding toA, i.e.,H [A]. Once this is done for all of the alerts
in AL the hash table H will hold a set of attack sessions for each
alert in theAL. This algorithm is sketched in Algorithm 2.2, where
the GetSession(A,AL) algorithm evaluates the attack sessions
for an alert A, as detailed before. The hash table H will serve as
the input to the training phase, as described later. Table 4 shows a
sample hash table H .

Algorithm 2.2: DATAEXTRACTIONPHASE(AL)

H ← hashtable()
for each A ∈ AL
doH [A].append(GETSESSION(A,AL))

Algorithm 2.1: GETSESSION(A ∈ AL,AL)

reversedList← AL.reverse() % X ← Y assigns the value of Y toX
attackSessionSet← set()
TargetList← set()
SourceList← set()
lastAlert← A
TargetList.append([lastAlert.target,lastAlert.source])
SourceList.append(lastAlert.source)
for each previousAlert ∈ reversedList

do



















































if previousAlert.time > lastAlert.time− w

then



























if (previousAlert.target ∈ TargetList
or previousAlert.source ∈ SourceList)

then















S.append(previousAlert.name)
lastAlert← previousAlert
TargetList.append([previousAlert.source,previousAlert.target])
SourceList.append(previousAlert.source)

else

break

return (S)

Table 4: A sample list of attack sessions, H .

Alert Name Attack sessions

E {A,B,D}, {A,B}, {A,C}, {B,D}, {B}
F {B,C,D}, {B,C}, {C}
... ...

An example run of the data extraction phase

For the sake of clarity, here we mention a sample run of the data
extraction phase. Let us suppose that Nexat received as input an
alerts list AL as shown in Table 3. As can be seen, AL contains
the name of the alerts along with their corresponding sources and
destination addresses, and the time when they occurred. We show
how Nexat proceeds to find the attack sessions for the last alert of
AL, i.e., E, for a time window size of w = 5sec.

Nexat traverses the AL list backwards, starting with alert J .
Since J does not share any source or destination address similari-
ties withE, it is not added it to the attack session S. The situation is
the same for alert K, since there is no shared destination or source
information with E. However, as can be seen, the destination ad-
dress of the alertD is the same as the source address of the last alert
in S, i.e., E. In fact, this can be an indication of an island-hopping
attack. Since the time difference between the alerts D and E (the
last alert in S) is less than the time window w = 5sec the alert D
is appended to the attack session S. In addition, the source address
ofD is added to SourceList(S) and TargetList(S), and its des-
tination address is added to TargetList(S). Similarly, the alerts
B and A are appended to S and their source and destination ad-
dresses are added to the corresponding lists. When Nexat reaches
the end of the AL list (or the time window w from the last alert
has elapsed), GetSession(E,AL) closes the attack session S
and appends it to the line indexed E of the list of attack sessions,
e.g., H [E]. In this example, the attack session S = {A,B,D} is
appended to the list of attack sessions shown in Table 4. The fol-
lowing is a real-world sample of an attack session that we observed
in our evaluations:

{"ICMP PING NMAP" , "(http_inspect) BARE BYTE UNI-
CODE ENCODING" , "WEB-PHP PHP function CRLF injection
attempt" , "WEB-MISC .htpasswd access" , "(http_inspect) DOU-
BLE ENCODING ATTACK" , "WEB-MISC encoded cross site
scripting attempt" , "SHELLCODE x86 NOOP"}.

2.2 Training Phase
Nexat uses the list of attack sessions, i.e., the hash table H ,

generated during the data extraction phase to train about the co-
occurrence of the alerts, i.e., to determine which alerts are more
likely to occur in the same attack session. The training algorithm is
depicted in Algorithm 2.3.

Algorithm 2.3: TRAININGPHASE(H)

T ← hashtable()
for each A ∈ H

do



















































U(A)← list()
for all S ∈ H [A]
do U = U ∪ S

for each x ∈ POWERSET(U)\{∅}

do















o← 0
for each S ∈ H [A]
do if x ⊆ S
then o← o+ 1

T [x].append({o,A})
total← hashtable()
for each y ∈ T

do

{

total[y]← 0
total← total+ T [y].o

for each y ∈ T
do T [y].o← T [y].o/total[y]

During the training phase, the TrainingPhase algorithm uses
the list of attack sessionsH , created in the data extraction phase, to
generate a trained dataset T . The trained dataset T is a hash table
indexed by the set of alerts. For any set of alerts x ∈ T , T keeps a
list of pairs (p,A) such that p is the empirical probability that x is
followed by the alert A. The generation of T is further described
later. The training algorithm of Nexat is performed as follows:

Table 5: A sample trained dataset T .

(a) Before normalization

{A} {3, E}

{B} {4, E}, {2, F}

{C} {1, E}, {3, F}

{D} {2, E}, {1, F}

{AB} {2, E}

{AC} {1, E}

{AD} {1, E}

{BC} {2, F}

{BD} {1, E}, {1, F}

{CD} {1, F}

{ABC} {Ø}

{ABD} {1, E}

{ACD} {Ø}

{BCD} {1, F}

(b) After normalization

{A} {1, E}

{B} {.66, E}, {.33, F}

{C} {.25, E}, {.75, F}

{D} {.66, E}, {.33, F}

{AB} {1, E}

{AC} {1, E}

{AD} {1, E}

{BC} {1, F}

{BD} {.5, E}, {.5, F}

{CD} {1, F}

{ABC} {Ø}

{ABD} {1, E}

{ACD} {Ø}

{BCD} {1, F}

• For each alert A ∈ H , TrainingPhase evaluates the
union set of all of the attack sessions thatH keeps for A. As
an example, if for an alert A the table H returns two attack
sessions of {B,C} and {B,F} the union set for A would
be U(A) = {B,C, F}. In fact, the union set U(A) returns
a set of possible precursor alerts for the alert A.

• TrainingPhase evaluates P (A), which is the power-set
of U(A) excluding the empty set {∅} and limited to a maxi-
mum size of k. As an example, for the U(A) = {B,C, F}
mentioned the corresponding power-set is P (A) = {{B},
{C}, {F}, {B,C}, {B,F}, {C, F}, {B,C, F}}. The limit
k is used to bound the computational complexity of Nexat
and is set to 3 in our implementation.

• For any set x ∈ P (A),TrainingPhase evaluatesN(x,A)
to be the number of attack sessions, S ∈ H [A] that are a su-
perset of x, i.e., N(x,A) = ||{S|S ∈ H(A)&x ⊆ S}||. If
N(x,A) > 0 the pair (N(x,A), A) is appended to the line
x of the hash table T , i.e., T [x].

• Finally, TrainingPhase normalizes the entries of the T
table by dividing each N(·, ·) by the sum of all of theN(·, ·)
entries in the same row of table T .

Table 5 shows a sample T hash table before and after normaliza-
tion. For any set x ∈ T , a normalized pair of (p,A) indicates that
with probability p the alert A proceeds the set of alerts in x. This
is used in the prediction phase to predict the next steps of an attack,
as described later.

It should be mentioned that limiting the size of the power-sets
to k = 3 puts a constraint on the storage and the computational
resources required by Nexat. Increasing k improves the training
process of Nexat at the cost of exponentially increasing the required
resources.

An example run of the training phase

We continue the example mentioned in Section 2.1 for the train-
ing phase of Nexat. The data extraction phase of Nexat generates
the list of attack sessions H that is shown in Table 4. As can
be seen, H keeps the attack session sets of {A,B,D}, {A,B},
{A,C}, {B,D}, {B} for the alert E, and the attack session sets
of {B,C,D}, {B,C}, {C} for the alert F . So, the union set cor-

responding to E can be evaluated as U(A) = {A,B,C,D}, re-
sulting in the corresponding powerset to be

P (E) = {{A}, {B}, {C}, {D}, {AB}, {AC}, {AD},

{BC}, {BD}, {CD}, {ABC}, {ABD}, {ACD},

{BCD}}

As mentioned before, the powerset P (·) excludes the empty set
and is limited to subsets with maximum size of k = 3. One can
similarly find the powerset corresponding to the alert F as

P (F) = {{B}, {C}, {D}, {BC}, {BD}, {CD}, {BCD}}

TrainingPhase uses these powersets to generate the trained
dataset T as described before. Table 5 shows the generated T be-
fore and after normalization.

2.3 Prediction phase
In the prediction phase, Nexat uses the trained dataset T gen-

erated during the training phase to make predictions on the live
streams of attacking events. More specifically, for each alert in a
live stream of alerts I returned by one or more IDSs, Nexat predicts
the most likely forthcoming alerts.

The prediction algorithm of Nexat is illustrated in Algorithm 2.4.
PredictionPhase uses a results list, R(T, I), to store the pre-
dictions performed on I using the trained dataset of T . R(T, I) is a
hash table indexed by the name of the alerts, where for each alert it
stores a list of result pairs in the form of (p, ℓ)where p is the proba-
bility and ℓ is the length of a set of alerts. The PredictionPhase
algorithm works as follows:

• Suppose thatAr is the last received alert in the live stream of
alerts I . PredictionPhase evaluates the attack session
Sr corresponding to Ar using the GetSession(Ar,I)
algorithm mentioned in Algorithm 2.1.

• PredictionPhase also evaluates Pr , the limited power-
set of Sr as defined before (excluding the empty set and lim-
ited to size k = 3).

• For any x ∈ Pr and for any r ∈ T [x], PredictionPhase
appends the result pair of (r.p, length(x)) to the line x of
hash table R, i.e., R[x]. r.p is the probability attribute of r,
as defined in Section 2.2, and length(x) returns the length
of the set x. This identifies all of the records in the trained
dataset that are related to the current alert.

• Finally, PredictionPhase normalizes the probability at-
tribute in the result pairs of the R table. In order to do this,
Nexat evaluates the weighted sum of the probabilities for
each row (corresponding to alertA) of the table as SumA =
∑

NumA

i=1
pi× ℓi, whereNumA is the number of result pairs

corresponding to alert A in R. PredictionPhase, then,
divides all of the probability attributes of the result pairs by
SumA to produce the normalized weighted probabilities.

Algorithm 2.4: PREDICTIONPHASE(T, I)

R← hash()
for each x ∈ POWERSET(GETSESSION(Ar, I))\∅

do

{

for each r ∈ T [x]
do R[r].append({r.p, length(x)})

for each A ∈ R

do















sum← 0
for each record ∈ R[A]
do sum← sum+ record.p ∗ record.ℓ

R[A]← sum
sum← 0
for each A ∈ R
do sum← sum+R[A]

for each A ∈ R
do R[A]← R[A]/sum

Nexat uses the weighted probabilities calculated above to pre-
dict the future alerts. In fact, by weighting the probabilities we
give more significance to the longer attack sessions from the trained
dataset. Table 6 shows a sample results list R.

An example run of the prediction phase

We will continue with the data provided from the training phase
example. PredictionPhase uses the trained dataset T from
the training phase to make predictions on a live stream of alerts
I . Suppose that running the GetSession algorithm on the most
recent alert of the stream I returns the set SI = {B,C,D}. The
power-set of SI , as defined before, results in the set

{{B}, {C}, {D}, {BC}, {BD}, {CD}, {BCD}}

. PredictionPhase extracts all of the corresponding records
from T and imports them into the results list R, as shown in the
Table 6. As can be seen, the entries of this hash table are the result
pairs in the form of (p, ℓ), where p is the probability of the subset
and ℓ is the length of the subset. The columns of the table show the
corresponding subsets for the sake of clarity. The table also shows
the weighted sum for the alerts E and F . Using the wighted sums
Nexat provides a predicted probability for any of the alerts to be
the next alert of I . As the table shows, for the mentioned example
Nexat provides a 78.5% prediction of F being the next alert, and a
21.5% predication of E being the next alert.

3. EVALUATION
In this section, we evaluate the performance of the Nexat attack

prediction tool described in this paper. We run a prototype im-
plementation of Nexat over a large database of attack alerts gath-
ered during the 2008 UCSB International Capture The Flag (iCTF)
hacking competition [2], held on December 2008. The alert database
contains 248,783 alerts that are generated by a snort intrusion de-
tection system during the competition. A total number of 800 at-
tackers from different educational institutions participated in the
iCTF competition in the form of 40 hacking teams.

An identical copy of the same multi-host network was dedicated
to each team, and the goal of the competition for the teams was to
compromise their dedicated networks through an arbitrary number
of attacking steps. The network was monitored by both signature-
based and anomaly-based intrusion detection systems. The com-
peting teams were allowed to use any hacking technique, however,
they would loose points whenever their activities we detected by
the intrusion detection systems. More information about the iCTF
2008 competition including the competition rules, the architecture

of the competition networks, and the list of the competitors is avail-
able online [2].

We use the database of alerts described above to evaluate the
prediction performance of Nexat: we use the alerts generated as
a result of attacking actions of one or more teams to train Nexat,
and then use the trained Nexat to predict the next actions of other
teams. In fact, this resembles the real-world scenario for attack pre-
diction: a network administrator aims at predicting future attacks
by having access to a history of attacks performed against the same
network infrastructure. The conducted evaluations are described in
the following.

Before explaining the experiments we define the accuracy metric
that is used for the evaluations.

DEFINITION 3. Accuracy: We define the accuracy of Nexat in
predicting an stream of alerts, I , to be the mean of the probabilities
that Nexat predicts for all of the observed alerts. More specifically,

if Nexat predicts the next alerts of I with probabilities pi (i =
1, .., n), the accuracy of Nexat is

∑

n

i=1
pi/n.

3.1 Experiment 1: trained by one team
In this experiment, Nexat is trained using the Snort alerts corre-

sponding to one of the hacking teams, and then the trained models
are used to predict the actions of the other teams. To do this, we ex-
tracted the alerts corresponding to any of the teams from the men-
tioned alerts database. Teams who produced less than 100 alerts
were ignored as this would not be sufficient data to provide for any
meaningful training. This filtering process left us with 33 unique
teams, each generating between 100 and 20000 alerts. This resulted
into 322 series of predictions, i.e., we choose one team for training
and try to predict actions of the other 32 teams.

Figure 1 depicts the results of the experiments for a time win-
dow of w = 5sec. Each point on the figure shows the accuracy of
Nexat, as defined in Definition 3, in predicting the actions of one
hacker team, being trained by the attack history of another team.
The horizontal axis of the figure shows the name of the team that
Nexat uses for training. The names assigned to the teams are not
their actual names, but their ranking at the end of the competition,
e.g., team 3 gained the third place in the competition. The empty
columns of the figure correspond to the teams that produced less
than 100 alerts, hence were not used to train Nexat. For any of the
hacker teams used for training Nexat, the figure also shows the av-
erage accuracy of Nexat in predicting the actions of all the other
teams. As can be seen, in 22 cases (out of a total of 33 cases)
the mean accuracy of Nexat in predicting the actions of the other
teams is more than 60%. This is significantly promising, because
Nexat uses the history of only one hacker team during the train-
ing phase. We observe that in a few cases, using a single team for
training Nexat results in very poor prediction performance, e.g., in
the case of teams ranked 13 and 24. We call such teams bad pre-

dictor teams. In fact, the bad predictor teams take hacking actions
that are different from the rest of the teams. We can see that most
of the bad predictor teams are placed in the lower two-third of the
competition’s ranking table, i.e., only one of the first 12 teams is
a bad predictor. We conclude that the more skilled a hacker team
is the better prediction performance is achieved by using that team
for training Nexat.

We also use a force-based algorithm to show the clusters of the
hacker teams based on the results of the predictor, as shown in Fig-
ure 2. Each circle in the figure represents one of the hacker teams,
where the number inside the circle is the rank of the team in the
competition. Two teams are connected in the graph if the accuracy
of Nexat in predicting each of them is more than 0.5, by using the

Table 6: A sample result list R.

Alerts {B} {C} {D} {BC} {BD} {CD} {BCD}
Weighted Predicted

sum probability

E (.66, 1) (.25, 1) (.66, 1) (0,2) (.5, 2) (0,2) (0,3) 2.583 0.215

F (.33, 1) (.75, 1) (.33, 1) (1, 2) (.5, 2) (1, 2) (1, 3) 9.416 0.785

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

P
o

s
it
iv

e
 P

re
d

ic
ti
o

n
 A

c
c
u

ra
c
y

Training Set Team Number

Prediction Accuracy Cross Training

average

Figure 1: The prediction accuracy of Nexat using only one team for training.

other one for training. As can be seen, most of the teams are well
connected in the graph, showing a high correlation between their
actions. The teams which are less connected to the graph represent
the bad predictor teams, as discussed before.

3.2 Experiment 2: trained by all the other teams
The results from the first experiment show how important a qual-

ity training set is to making accurate predictions. The teams whose
training sets proved to be poor, likely had little to no overlap with
the vast majority of teams in the competition, with respect to their
attack behavior. In this experiment we try to improve the prediction
accuracy of Nexat by using the histories of multiple hacker teams
to train Nexat. This is unlike the first experiment where only one
team’s history was used for training.

Figure 3 shows the prediction accuracy of Nexat for each team,
when the histories of all the other teams are used to train Nexat. In
other words, each point on the graph shows the accuracy of Nexat
in predicting the team shown in the horizontal axis, being trained
by the other 32 teams. As can be seen, using the actions of mul-
tiple teams to train Nexat drastically improves its prediction per-
formance. In particular, all the prediction accuracies are more than
80%, and the average prediction accuracy is 94%. This is due to the

fact that the training set has a much larger coverage of unique alerts,
since it could combine the strategies of several different teams.

3.3 Effect of the time window on the results
As mentioned before, in the training phase of Nexat a time win-

dow of w is used in order to divide each complex compromise ac-
tivity into distinct sessions. The value of w impacts the prediction
accuracy of Nexat in different ways. By using a large value for w,
Nexat can collect more of the alerts that correspond to the same
complete attack, hence improving its training phase. This, how-
ever, increases the computational complexity of Nexat by generat-
ing more sets of alerts. Using a properly sized time window gives
us a balance of prediction accuracy and computational complexity.

Figure 4 shows the average prediction accuracy of Nexat being
trained on the history of team 25, for different values of the w pa-
rameter in the logarithmic scale. As can be seen, increasingw dras-
tically improves the prediction accuracy for w ≤ 10sec, however,
it does not change significantly for the larger values of w. Consid-
ering the impact of w on the computational complexity, we choose
w = 5 in our implementation, as it makes a reasonable tradeoff
between the complexity and the accuracy of Nexat.

13

5

33

30

3
27

15

16

26

18

10

69

32

1

2

20

17
7

11

38

8

23

28

12

19

22

25

39

21

29

31

Figure 2: Clustering the hacker teams based on the prediction accuracy of Nexat (only one team is used for training).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

Team Number

Figure 3: The prediction accuracy of Nexat using 32 teams for training.

3.4 Nexat’s resources
We ran the prototype implementation of Nexat on a laptop with

a 2.53GHtz processor, 4GB memory, and 100GB disk space. Our
measurements show that Nexat is able to predict the attacks with

very reasonable resourcces, making it suitable to be deployed in
real-time scenarios. Nexat performed the training phase for each
team in about 1.7 seconds, using around 30 MB of RAM for each
team. This resulted in less than one minute to train all of the com-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y

Time Window (w)

Figure 4: The effect of the time window w on the prediction accuracy.

peting teams. During the prediction phase, Nexat ran the data from
each team against any of the profiles in about 2.4 seconds, using an
average memory of 32MB. This resulted in a total prediction time
of about one minute and a half for each of the teams. We expect
that a customized implementation of Nexat on a powerful network
monitoring device will result in much faster operation of Nexat.

4. RELATED WORK
Several different approaches have been taken by researchers in

order to analyze security alerts. Several researchers have consid-
ered alert correlation by grouping low-level alerts together in or-
der to find cohesive groups or precursor of alerts [12, 11, 4, 5, 27,
16, 17]. As they rely on different levels of predefined knowledge
of attack conditions and consequences, most of such approaches
have limited effectiveness. In other words, they are not able to pro-
vide valid alert correlations for unknown attacks or unknown attack
relations. Plan recognition has been a common approach to pre-
dicting attacker behavior [8]. Plan recognition approaches use pre-
determined attacker plans in order to predict future attacks. Plan
recognition approaches, however, are not scalable as they require
inputs from a security professional in order to perform their predic-
tions. This is in contrast to Nexat, which performs the prediction in
a fully automated manner using machine learning techniques.

Alternatively, some research use statistical tools in order to ana-
lyze the security alerts. Qin et al. look for attack scenarios by cor-
relating the alerts and finding their causality relations [21]. More
specifically, they classify the alerts into a number of clusters and
present each cluster as a time series of alerts. Also, the resulting
alerts are ranked based on the expert knowledge. Finally, Granger
causality analysis is used on the time series of the top-ranked alerts
in order to compute precursor alerts. The Granger causality test
gives statistical predictions on whether a time series of alerts is an
adequate predictor of another time series of alerts. Unfortunately,
the performance of this approach is very sensitive to the presence
of unrelated background alerts. For instance, running their tool on
a 5-day sample of the 2000 DARPA Intrusion Detection Scenarios
dataset results in about 94% true causality detection and 14% false
causality detection. The false positives are even higher for DEF-
CON 9 traces due to the presence of more background alerts.

Qin and Lee conduct probabilistic inference using casual net-
works to recognize the attack plans and make some predictions on
the attacks [22]. More specifically, the authors develop a graph-
based technique in order to correlate isolated attack scenarios, ex-
tracted from low-level alert correlation, based on their relations in
attack plans. This is followed by probabilistic inference to evalu-
ate the likelihood of the attack goals, hence predict potential future
attacks using the generated causal networks. The authors evalu-
ate their algorithms on the dataset of attack alerts of the DARPA’s
Grand Challenge Program of 2003. The paper only provides sam-
ple attack predictions with average 0.7 chance of prediction. This
is in contrast to the higher accuracies of Nexat, as described in this
section. Another main issue with this approach is that it is not scal-
able as the size of the attack trees and the causal networks grows
very rapidly with the size of the dataset. Wang et al. also use at-
tack graphs for analyzing the alerts and making predictions [28].
The paper differs from previous work by using a queue graph in-
stead of the timing windows to analyze the recent alerts, requiring
less memory and speeding up the attack correlation tasks. The ba-
sic queue graph approach is also extended to a unified method to
identify the missing alerts and to predict future alerts. The authors
provide sample successful alert prediction but point out the pos-
sibilities of false positives and false negatives in practice due to
incomplete or inaccurate domain knowledge. Moreover, this ap-
proach is sensitive to the timing inaccuracies of the reporting IDS
systems.

Some research use game theory in order to predict the next ac-
tions of cyber attacks [13, 9]. In order to make the prediction, the
game theoretic approach requires knowledge about all of the possi-
ble actions of the attackers against the defending system in order to
predict the best actions of the attackers in different scenarios. This
information is not usually available to the defending systems which
degrades the applicability of this approach in many scenarios.

5. CONCLUSIONS
In this paper, we presented the design and implementation of

Nexat, a tool for the prediction of attacker behavior. Nexat relies on
machine-learning techniques to learn the attacker’s behavior from
previous alert histories and does not require any input from security

professionals to make predictions. Also, since Nexat’s prediction is
not order-dependent, it can handle minor timing errors associated
with the reporting from intrusion detection systems. We validate
the prediction accuracy of Nexat through a prototype implementa-
tion. The results show that by training Nexat on a large database
of attacker behavior it is possible to perform attack prediction with
an average accuracy of 94%. Future work will include researching
alternative machine learning algorithms in order to further improve
the accuracy of the predictions as well as lowering the computa-
tional complexity.

6. ACKNOWLEDGEMENTS
This work was supported by the ARO under grant W911NF-09-

1-0553, the National Science Foundation (NSF) under grants CNS-
0845559 and CNS-0905537.

7. REFERENCES

[1] IBM Internet Security Systems. http://www.iss.net/.

[2] The 2008 UCSB International Capture The Flag (iCTF).
http://ictf.cs.ucsb.edu/archive/iCTF_

2008/index.html, December 5th 2008.

[3] Paul Barford, Marc Dacier, Thomas G. Dietterich, Matt
Fredrikson, Jon Giffin, Sushil Jajodia, Somesh Jha, Jason Li,
Peng Liu, Peng Ning, Xinming Ou, Dawn Song, Laura
Strater, Vipin Swarup, George Tadda, Cliff Wang, and John
Yen. Cyber SA: Situational Awareness for Cyber Defense. In
Sushil Jajodia, Peng Liu, Vipin Swarup, and Cliff Wang,
editors, Cyber Situational Awareness, volume 46 of
Advances in Information Security, pages 3–13. Springer US,
2010.

[4] F. Cuppens and A. Miege. Alert Correlation in a Cooperative
Intrusion Detection Framework. In Proceedings of the IEEE
Symposium on Security and Privacy, 2002.

[5] H. Debar and A. Wespi. Aggregation and Correlation of
Intrusion-Detection Alerts. In Proceedings of the
International Symposium on Recent Advances in Intrusion

Detection, 2001.

[6] M. R. Endsley. Towards a Theory of Situation Awareness in
Dynamic Systems. Human Factors, 37:32, 1995.

[7] Mica R. Endsley. Design and Evaluation for Situation
Awareness Enhancement. In Proceedings of the Human
Factors Society 32nd Annual Meeting, volume 1 of
Aerospace Systems: Situation Awareness in Aircraft Systems,
pages 97–101, 1988.

[8] C.W. Geib and R.P. Goldman. Plan Recognition in Intrusion
Detection Systems. In DARPA Information Survivability

Conference & Exposition (DISCEX), 2001.

[9] Wei Jiang, Zhi hong Tian, Hong li Zhang, and Xin fang
Song. A Stochastic Game Theoretic Approach to Attack
Prediction and Optimal Active Defense Strategy Decision. In
IEEE International Conference on Networking, Sensing and

Control (ICNSC’08) , pages 648 –653, april 2008.

[10] Gary Klein and Beth Crandall. Recognition-Primed Decision
Strategies. Technical report ARI Research Note 96-36,
United States Army Research Institute for the Behavioral
and Social Sciences, April 1996.
http://handle.dtic.mil/100.2/ADA309570.

[11] C. Kruegel, W. Robertson, and G. Vigna. Using Alert
Verification to Identify Successful Intrusion Attempts.
Practice in Information Processing and Communication

(PIK), 27(4):219 – 227, October – December 2004.

[12] C. Kruegel, F. Valeur, and G. Vigna. Intrusion Detection and

Correlation: Challenges and Solutions, volume 14 of
Advances in Information Security. Springer, 2005.

[13] P. Liu and L. Li. A Game Theoretic Approach to Attack
Prediction. Technical report, Penn State Cyber Security
Group, 2002.

[14] V. Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing.
Ranking attack graphs. In Recent Advances in Intrusion
Detection, 2006.

[15] Sanjeeb Nanda and Narsingh Deo. The Derivation and Use
of a Scalable Model for Network Attack Identification and
Path Prediction. JNW, 3(4):64–71, 2008.

[16] P. Ning, Y. Cui, , and D. Reeves. Analyzing Intensive
Intrusion Alerts via Correlation. In Proceedings of the
International Symposium on the Recent Advances in

Intrusion Detection, 2002.

[17] P. Ning, Y. Cui, and D. Reeves. Constructing Attack
Scenarios through Correlation of Intrusion Alerts. In
Proceedings of the ACM Conference on Computer and

Communications Security, 2002.

[18] Steven Noel and Sushil Jajodia. Understanding complex
network attack graphs through clustered adjacency matrices.
In 21st Annual Computer Security Applications Conference
(ACSAC 2005), pages 160–169. IEEE Computer Society,
2005.

[19] V. Paxson. Bro: A system for detecting network intruders in
real-time. In Proceedings of the 7th USENIX Security

Symposium, 1998.

[20] P. Porras, M. Fong, and A. Valdes. A Mission-Impact-Based
Approach to INFOSEC Alarm Correlation. In Proceedings of
the International Symposium on the Recent Advances in

Intrusion Detection, 2002.

[21] X. Qin and W. Lee. Statistical Causality Analysis of
INFOSEC Alert Data. In Proceedings of the Symposium on

Recent Advances in Intrusion Detection (RAID), 2003.

[22] X. Qin and W. Lee. Attack Plan Recognition and Prediction
Using Causal Networks. In Proceedings of the 20th Annual
Computer Security Applications Conference, 2004.

[23] J. Rasmussen. Skills, Rules, and Knowledge; Signals, Signs
and Symbols, and Other Distinctions in Humans
Performance Models. IEEE Transactions on Systems, Man

and Cybernetics, 13:257, 1983.

[24] M. Roesch. Snort - Lightweight Intrusion Detection for
Networks. In Proceedings of the 13th Large Installation
System Administration (LISA) Conference, 1999.

[25] J.J. Salerno, M.L. Hinman, and D.M. Boulware. A situation
awareness model applied to multiple domains. In
Proceedings of SPIE, volume 5813, pages 65–74, 2005.

[26] G. Tadda, J.J. Salerno, D. Boulware, M. Hinman, and
S. Gorton. Realizing situation awareness within a cyber
environment. InMultisensor, Multisource Information

Fusion: Architectures, Algorithms, and Applications 2006,
volume 6242. SPIE, 2006.

[27] F. Valeur, G. Vigna, C. Kruegel, and R.A. Kemmerer. A
Comprehensive Approach to Intrusion Detection Alert
Correlation. IEEE Transactions on Dependable and Secure

Computing, 1:146–169, 2004.

[28] L. Wang, A. Liu, and S. Jajodia. Using attack graphs for
correlating, hypothesizing, and predicting intrusion alerts.
Computer Communications, 29(15):2917–2933, 2006.

